
    (ph                     Z    S SK rSSKJrJrJr  SS/r/ SQrS rS r	 " S	 S
5      r
SS jrg)    N   )_output_len_apply	mode_enumupfirdnr   )	constantwrapedgesmooth	symmetricreflectantisymmetricantireflectlinec                     [        U 5      [        U 5      * U-  -   n[        R                  " X R                  5      nXS[        U 5      & UR	                  SU5      R
                  SS2SSS24   R                  5       nU$ )a  Store coefficients in a transposed, flipped arrangement.

For example, suppose upRate is 3, and the
input number of coefficients is 10, represented as h[0], ..., h[9].

Then the internal buffer will look like this::

   h[9], h[6], h[3], h[0],   // flipped phase 0 coefs
   0,    h[7], h[4], h[1],   // flipped phase 1 coefs (zero-padded)
   0,    h[8], h[5], h[2],   // flipped phase 2 coefs (zero-padded)

N)lennpzerosdtypereshapeTravel)huph_padlenh_fulls       H/var/www/html/venv/lib/python3.13/site-packages/scipy/signal/_upfirdn.py_pad_hr   .   sl     1v#a&2&HXXh(F7CFO^^B#%%a2g.446FM    c                 <    U R                  5       n [        U 5      nU$ )N)lowerr   )modeenums     r   _check_moder%   B   s    ::<DT?DKr    c                   (    \ rS rSrSrS rSS jrSrg)_UpFIRDnH   zHelper for resampling.c                 d   [         R                  " U5      nUR                  S:w  d  UR                  S:X  a  [	        S5      e[         R
                  " UR                  U[         R                  5      U l        [         R                  " XR                  5      n[        U5      U l
        [        U5      U l        U R                  S:  d  U R                  S:  a  [	        S5      e[        XR                  5      U l        [         R                  " U R                  5      U l        [        U5      U l        g )Nr   r   z"h must be 1-D with non-zero lengthzBoth up and down must be >= 1)r   asarrayndimsize
ValueErrorresult_typer   float32_output_typeint_up_downr   _h_trans_flipascontiguousarrayr   _h_len_orig)selfr   x_dtyper   downs        r   __init___UpFIRDn.__init__K   s    JJqM66Q;!&&A+ABBNN177GRZZHJJq++,r7Y
88a<4::><==#Axx011$2D2DEq6r    c           
         [        U R                  UR                  U   U R                  U R                  5      n[
        R                  " UR                  [
        R                  S9nXVU'   [
        R                  " X`R                  SS9nX!R                  -  n[        U5      n[        [
        R                  " XR                  5      U R                  UU R                  U R                  X#U5        U$ )z@Apply the prepared filter to the specified axis of N-D signal x.)r   C)r   order)r   r6   shaper2   r3   r   r*   int64r   r0   r+   r%   r   r4   )r7   xaxisr#   cval
output_lenoutput_shapeouts           r   apply_filter_UpFIRDn.apply_filterZ   s     !1!11774=!%4::7
 zz!'':'Thh|+<+<CHff}4 rzz!../!!3xxT	7 
r    )r3   r6   r4   r0   r2   N)r   r   r   )__name__
__module____qualname____firstlineno____doc__r:   rG   __static_attributes__ r    r   r'   r'   H   s     "r    r'   c                 ~    [         R                  " U5      n[        XR                  X#5      nUR	                  XXV5      $ )aG  Upsample, FIR filter, and downsample.

Parameters
----------
h : array_like
    1-D FIR (finite-impulse response) filter coefficients.
x : array_like
    Input signal array.
up : int, optional
    Upsampling rate. Default is 1.
down : int, optional
    Downsampling rate. Default is 1.
axis : int, optional
    The axis of the input data array along which to apply the
    linear filter. The filter is applied to each subarray along
    this axis. Default is -1.
mode : str, optional
    The signal extension mode to use. The set
    ``{"constant", "symmetric", "reflect", "edge", "wrap"}`` correspond to
    modes provided by `numpy.pad`. ``"smooth"`` implements a smooth
    extension by extending based on the slope of the last 2 points at each
    end of the array. ``"antireflect"`` and ``"antisymmetric"`` are
    anti-symmetric versions of ``"reflect"`` and ``"symmetric"``. The mode
    `"line"` extends the signal based on a linear trend defined by the
    first and last points along the ``axis``.

    .. versionadded:: 1.4.0
cval : float, optional
    The constant value to use when ``mode == "constant"``.

    .. versionadded:: 1.4.0

Returns
-------
y : ndarray
    The output signal array. Dimensions will be the same as `x` except
    for along `axis`, which will change size according to the `h`,
    `up`,  and `down` parameters.

Notes
-----
The algorithm is an implementation of the block diagram shown on page 129
of the Vaidyanathan text [1]_ (Figure 4.3-8d).

The direct approach of upsampling by factor of P with zero insertion,
FIR filtering of length ``N``, and downsampling by factor of Q is
O(N*Q) per output sample. The polyphase implementation used here is
O(N/P).

.. versionadded:: 0.18

References
----------
.. [1] P. P. Vaidyanathan, Multirate Systems and Filter Banks,
       Prentice Hall, 1993.

Examples
--------
Simple operations:

>>> import numpy as np
>>> from scipy.signal import upfirdn
>>> upfirdn([1, 1, 1], [1, 1, 1])   # FIR filter
array([ 1.,  2.,  3.,  2.,  1.])
>>> upfirdn([1], [1, 2, 3], 3)  # upsampling with zeros insertion
array([ 1.,  0.,  0.,  2.,  0.,  0.,  3.])
>>> upfirdn([1, 1, 1], [1, 2, 3], 3)  # upsampling with sample-and-hold
array([ 1.,  1.,  1.,  2.,  2.,  2.,  3.,  3.,  3.])
>>> upfirdn([.5, 1, .5], [1, 1, 1], 2)  # linear interpolation
array([ 0.5,  1. ,  1. ,  1. ,  1. ,  1. ,  0.5])
>>> upfirdn([1], np.arange(10), 1, 3)  # decimation by 3
array([ 0.,  3.,  6.,  9.])
>>> upfirdn([.5, 1, .5], np.arange(10), 2, 3)  # linear interp, rate 2/3
array([ 0. ,  1. ,  2.5,  4. ,  5.5,  7. ,  8.5])

Apply a single filter to multiple signals:

>>> x = np.reshape(np.arange(8), (4, 2))
>>> x
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7]])

Apply along the last dimension of ``x``:

>>> h = [1, 1]
>>> upfirdn(h, x, 2)
array([[ 0.,  0.,  1.,  1.],
       [ 2.,  2.,  3.,  3.],
       [ 4.,  4.,  5.,  5.],
       [ 6.,  6.,  7.,  7.]])

Apply along the 0th dimension of ``x``:

>>> upfirdn(h, x, 2, axis=0)
array([[ 0.,  1.],
       [ 0.,  1.],
       [ 2.,  3.],
       [ 2.,  3.],
       [ 4.,  5.],
       [ 4.,  5.],
       [ 6.,  7.],
       [ 6.,  7.]])
)r   r*   r'   r   rG   )r   rA   r   r9   rB   r#   rC   ufds           r   r   r   k   s5    T 	

1A
1ggr
(CAT00r    )r   r   r   r   r   )numpyr   _upfirdn_applyr   r   r   __all___upfirdn_modesr   r%   r'   r   rO   r    r   <module>rV      s=   D  : :m
$(   Fm1r    