
    (phq              	       N   S r SSKrSSKrSSKJr  SSKJr  SSKJ	r	J
r
JrJrJr  SSKJrJr  SS	KJr  SS
KJr  S r\R.                  S 5       rS rS rSS jrSSSS\R8                  * \R8                  4SSSS4	S jrS rS rS r \R8                  * \R8                  4SS4S jr!g)z'Routines for numerical differentiation.    N)norm)LinearOperator   )issparse
csc_matrix
csr_matrix
coo_matrixfind   )group_densegroup_sparse)array_namespace)array_api_extrac                    US:X  a  [         R                  " U[        S9nOAUS:X  a0  [         R                  " U5      n[         R                  " U[        S9nO[        S5      e[         R                  " U[         R                  * :H  U[         R                  :H  -  5      (       a  X4$ X-  nUR                  5       nX-
  n	XP-
  n
US:X  ao  X-   nX:  X:  -  n[         R                  " U5      [         R                  " X5      :*  nXU-  ==   S-  ss'   X:  U) -  nX   U-  X'   X:  U) -  nX   * U-  X'   X4$ US:X  a  X:  X:  -  nX:  U) -  n[         R                  " X   SX   -  U-  5      X'   SXn'   X:  U) -  n[         R                  " X   SX   -  U-  5      * X'   SXo'   [         R                  " X5      U-  nU) [         R                  " U5      U:*  -  nUU   UU'   SUU'   X4$ )	a<  Adjust final difference scheme to the presence of bounds.

Parameters
----------
x0 : ndarray, shape (n,)
    Point at which we wish to estimate derivative.
h : ndarray, shape (n,)
    Desired absolute finite difference steps.
num_steps : int
    Number of `h` steps in one direction required to implement finite
    difference scheme. For example, 2 means that we need to evaluate
    f(x0 + 2 * h) or f(x0 - 2 * h)
scheme : {'1-sided', '2-sided'}
    Whether steps in one or both directions are required. In other
    words '1-sided' applies to forward and backward schemes, '2-sided'
    applies to center schemes.
lb : ndarray, shape (n,)
    Lower bounds on independent variables.
ub : ndarray, shape (n,)
    Upper bounds on independent variables.

Returns
-------
h_adjusted : ndarray, shape (n,)
    Adjusted absolute step sizes. Step size decreases only if a sign flip
    or switching to one-sided scheme doesn't allow to take a full step.
use_one_sided : ndarray of bool, shape (n,)
    Whether to switch to one-sided scheme. Informative only for
    ``scheme='2-sided'``.
1-sideddtype2-sidedz(`scheme` must be '1-sided' or '2-sided'.      ?TF)np	ones_likeboolabs
zeros_like
ValueErrorallinfcopymaximumminimum)x0h	num_stepsschemelbubuse_one_sidedh_total
h_adjusted
lower_dist
upper_distxviolatedfittingforwardbackwardcentralmin_distadjusted_centrals                      J/var/www/html/venv/lib/python3.13/site-packages/scipy/optimize/_numdiff.py_adjust_scheme_to_boundsr6      s   > Qd3	9	FF1Iat4CDD	vvrbffW}rvv.//mGJJJLFqv&&&/RZZ
%GGg%&",&+x7(1I=
+x7 * 44y@
& $$% 
9	(Z-BC+x7 jjJj11I=?
!%+x7 "

Kz33i?!A  A
"&::j5	A$Hz(:h(FG'/0@'A
#$*/&'$$    c                 j   [         R                  " [         R                  5      R                  nSn[         R                  " U [         R
                  5      (       aB  [         R                  " U 5      R                  n[         R                  " U 5      R                  nSn[         R                  " U[         R
                  5      (       aM  [         R                  " U5      R                  nU(       a&  UW:  a   [         R                  " U5      R                  nUS;   a  US-  $ US;   a  US-  $ [        S5      e)aX  
Calculates relative EPS step to use for a given data type
and numdiff step method.

Progressively smaller steps are used for larger floating point types.

Parameters
----------
f0_dtype: np.dtype
    dtype of function evaluation

x0_dtype: np.dtype
    dtype of parameter vector

method: {'2-point', '3-point', 'cs'}

Returns
-------
EPS: float
    relative step size. May be np.float16, np.float32, np.float64

Notes
-----
The default relative step will be np.float64. However, if x0 or f0 are
smaller floating point types (np.float16, np.float32), then the smallest
floating point type is chosen.
FT)2-pointcsr   )3-pointgUUUUUU?zBUnknown step method, should be one of {'2-point', '3-point', 'cs'})	r   finfofloat64eps
issubdtypeinexactr   itemsizeRuntimeError)x0_dtypef0_dtypemethodEPSx0_is_fpx0_itemsizef0_itemsizes          r5   _eps_for_methodrJ   \   s    < ((2::

"
"CH	}}Xrzz**hhx $$hhx(11	}}Xrzz**hhx(11k1((8$((C""Cx	;	Sz : ; 	;r7   c           
         US:  R                  [        5      S-  S-
  n[        UR                  UR                  U5      nU c2  XT-  [        R
                  " S[        R                  " U5      5      -  nU$ X-  [        R                  " U5      -  nX-   U-
  n[        R                  " US:H  XT-  [        R
                  " S[        R                  " U5      5      -  U5      nU$ )a*  
Computes an absolute step from a relative step for finite difference
calculation.

Parameters
----------
rel_step: None or array-like
    Relative step for the finite difference calculation
x0 : np.ndarray
    Parameter vector
f0 : np.ndarray or scalar
method : {'2-point', '3-point', 'cs'}

Returns
-------
h : float
    The absolute step size

Notes
-----
`h` will always be np.float64. However, if `x0` or `f0` are
smaller floating point dtypes (e.g. np.float32), then the absolute
step size will be calculated from the smallest floating point size.
r   r   r         ?)astypefloatrJ   r   r   r    r   where)rel_stepr"   f0rE   sign_x0rstepabs_stepdxs           r5   _compute_absolute_steprV      s    6 Qwu%)A-GBHHbhh7E?RZZRVVBZ%@@ O %r
2 }"88B!G!ObjjbffRj.II$& Or7   c                     S U  5       u  p#UR                   S:X  a   [        R                  " X!R                  5      nUR                   S:X  a   [        R                  " X1R                  5      nX#4$ )aA  
Prepares new-style bounds from a two-tuple specifying the lower and upper
limits for values in x0. If a value is not bound then the lower/upper bound
will be expected to be -np.inf/np.inf.

Examples
--------
>>> _prepare_bounds([(0, 1, 2), (1, 2, np.inf)], [0.5, 1.5, 2.5])
(array([0., 1., 2.]), array([ 1.,  2., inf]))
c              3   T   #    U  H  n[         R                  " U[        S 9v   M      g7f)r   N)r   asarrayrN   ).0bs     r5   	<genexpr>"_prepare_bounds.<locals>.<genexpr>   s     9&Qbjj%(&s   &(r   )ndimr   resizeshape)boundsr"   r&   r'   s       r5   _prepare_boundsrb      sQ     :&9FB	ww!|YYr88$	ww!|YYr88$6Mr7   c                    [        U 5      (       a  [        U 5      n O8[        R                  " U 5      n U S:g  R	                  [        R
                  5      n U R                  S:w  a  [        S5      eU R                  u  p#Ub  [        R                  " U5      (       a1  [        R                  R                  U5      nUR                  U5      nO2[        R                  " U5      nUR                  U4:w  a  [        S5      eU SS2U4   n [        U 5      (       a"  [        X#U R                  U R                   5      nO[#        X#U 5      nUR%                  5       XQ'   U$ )aj  Group columns of a 2-D matrix for sparse finite differencing [1]_.

Two columns are in the same group if in each row at least one of them
has zero. A greedy sequential algorithm is used to construct groups.

Parameters
----------
A : array_like or sparse matrix, shape (m, n)
    Matrix of which to group columns.
order : int, iterable of int with shape (n,) or None
    Permutation array which defines the order of columns enumeration.
    If int or None, a random permutation is used with `order` used as
    a random seed. Default is 0, that is use a random permutation but
    guarantee repeatability.

Returns
-------
groups : ndarray of int, shape (n,)
    Contains values from 0 to n_groups-1, where n_groups is the number
    of found groups. Each value ``groups[i]`` is an index of a group to
    which ith column assigned. The procedure was helpful only if
    n_groups is significantly less than n.

References
----------
.. [1] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
       sparse Jacobian matrices", Journal of the Institute of Mathematics
       and its Applications, 13 (1974), pp. 117-120.
r   r   z`A` must be 2-dimensional.Nz`order` has incorrect shape.)r   r   r   
atleast_2drM   int32r^   r   r`   isscalarrandomRandomStatepermutationrY   r   indicesindptrr   r   )Aordermnrnggroupss         r5   group_columnsrr      s   < {{qMMM!!VOOBHH%vv{56677DA}E**ii##E*"

5!;;1$;<<	!U(A{{aAIIqxx8Q1%KKMFMMr7   r;   F c           
      8  ^ ^^	^
^ US;  a  [        SU S35      e[        T5      m[        R                  " TR	                  T5      STS9nTR
                  nTR                  UR                  S5      (       a  UR                  nTR                  X5      mTR                  S:  a  [        S5      e[        UT5      u  pUR                  TR                  :w  d  UR                  TR                  :w  a  [        S5      eU(       ai  [        R                  " [        R                  " U5      5      (       a/  [        R                  " [        R                  " U5      5      (       d  [        S	5      eT
c  0 m
U	U U
UU4S
 jnUc	  U" T5      nO1[        R                  " U5      nUR                  S:  a  [        S5      e[        R                   " TU:  TU:  -  5      (       a  [        S5      eU(       a2  Uc!  [#        TR                  UR                  U5      n[%        UTXSU5      $ Uc  ['        UTXR5      nOTS:  R                  [(        5      S-  S-
  nUnTU-   T-
  n[        R*                  " US:H  [#        TR                  UR                  U5      U-  [        R,                  " S[        R.                  " T5      5      -  U5      nUS:X  a  [1        TUSSX5      u  nnO!US:X  a  [1        TUSSX5      u  nnOUS:X  a  SnUc  [3        UTUUWU5      $ [5        U5      (       d  [7        U5      S:X  a  Uu  nnOUn[9        U5      n[5        U5      (       a  [;        U5      nO[        R<                  " U5      n[        R                  " U5      n[?        UTUUWUUU5      $ )a  Compute finite difference approximation of the derivatives of a
vector-valued function.

If a function maps from R^n to R^m, its derivatives form m-by-n matrix
called the Jacobian, where an element (i, j) is a partial derivative of
f[i] with respect to x[j].

Parameters
----------
fun : callable
    Function of which to estimate the derivatives. The argument x
    passed to this function is ndarray of shape (n,) (never a scalar
    even if n=1). It must return 1-D array_like of shape (m,) or a scalar.
x0 : array_like of shape (n,) or float
    Point at which to estimate the derivatives. Float will be converted
    to a 1-D array.
method : {'3-point', '2-point', 'cs'}, optional
    Finite difference method to use:
        - '2-point' - use the first order accuracy forward or backward
                      difference.
        - '3-point' - use central difference in interior points and the
                      second order accuracy forward or backward difference
                      near the boundary.
        - 'cs' - use a complex-step finite difference scheme. This assumes
                 that the user function is real-valued and can be
                 analytically continued to the complex plane. Otherwise,
                 produces bogus results.
rel_step : None or array_like, optional
    Relative step size to use. If None (default) the absolute step size is
    computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``, with
    `rel_step` being selected automatically, see Notes. Otherwise
    ``h = rel_step * sign(x0) * abs(x0)``. For ``method='3-point'`` the
    sign of `h` is ignored. The calculated step size is possibly adjusted
    to fit into the bounds.
abs_step : array_like, optional
    Absolute step size to use, possibly adjusted to fit into the bounds.
    For ``method='3-point'`` the sign of `abs_step` is ignored. By default
    relative steps are used, only if ``abs_step is not None`` are absolute
    steps used.
f0 : None or array_like, optional
    If not None it is assumed to be equal to ``fun(x0)``, in this case
    the ``fun(x0)`` is not called. Default is None.
bounds : tuple of array_like, optional
    Lower and upper bounds on independent variables. Defaults to no bounds.
    Each bound must match the size of `x0` or be a scalar, in the latter
    case the bound will be the same for all variables. Use it to limit the
    range of function evaluation. Bounds checking is not implemented
    when `as_linear_operator` is True.
sparsity : {None, array_like, sparse matrix, 2-tuple}, optional
    Defines a sparsity structure of the Jacobian matrix. If the Jacobian
    matrix is known to have only few non-zero elements in each row, then
    it's possible to estimate its several columns by a single function
    evaluation [3]_. To perform such economic computations two ingredients
    are required:

    * structure : array_like or sparse matrix of shape (m, n). A zero
      element means that a corresponding element of the Jacobian
      identically equals to zero.
    * groups : array_like of shape (n,). A column grouping for a given
      sparsity structure, use `group_columns` to obtain it.

    A single array or a sparse matrix is interpreted as a sparsity
    structure, and groups are computed inside the function. A tuple is
    interpreted as (structure, groups). If None (default), a standard
    dense differencing will be used.

    Note, that sparse differencing makes sense only for large Jacobian
    matrices where each row contains few non-zero elements.
as_linear_operator : bool, optional
    When True the function returns an `scipy.sparse.linalg.LinearOperator`.
    Otherwise it returns a dense array or a sparse matrix depending on
    `sparsity`. The linear operator provides an efficient way of computing
    ``J.dot(p)`` for any vector ``p`` of shape (n,), but does not allow
    direct access to individual elements of the matrix. By default
    `as_linear_operator` is False.
args, kwargs : tuple and dict, optional
    Additional arguments passed to `fun`. Both empty by default.
    The calling signature is ``fun(x, *args, **kwargs)``.

Returns
-------
J : {ndarray, sparse matrix, LinearOperator}
    Finite difference approximation of the Jacobian matrix.
    If `as_linear_operator` is True returns a LinearOperator
    with shape (m, n). Otherwise it returns a dense array or sparse
    matrix depending on how `sparsity` is defined. If `sparsity`
    is None then a ndarray with shape (m, n) is returned. If
    `sparsity` is not None returns a csr_matrix with shape (m, n).
    For sparse matrices and linear operators it is always returned as
    a 2-D structure, for ndarrays, if m=1 it is returned
    as a 1-D gradient array with shape (n,).

See Also
--------
check_derivative : Check correctness of a function computing derivatives.

Notes
-----
If `rel_step` is not provided, it assigned as ``EPS**(1/s)``, where EPS is
determined from the smallest floating point dtype of `x0` or `fun(x0)`,
``np.finfo(x0.dtype).eps``, s=2 for '2-point' method and
s=3 for '3-point' method. Such relative step approximately minimizes a sum
of truncation and round-off errors, see [1]_. Relative steps are used by
default. However, absolute steps are used when ``abs_step is not None``.
If any of the absolute or relative steps produces an indistinguishable
difference from the original `x0`, ``(x0 + dx) - x0 == 0``, then a
automatic step size is substituted for that particular entry.

A finite difference scheme for '3-point' method is selected automatically.
The well-known central difference scheme is used for points sufficiently
far from the boundary, and 3-point forward or backward scheme is used for
points near the boundary. Both schemes have the second-order accuracy in
terms of Taylor expansion. Refer to [2]_ for the formulas of 3-point
forward and backward difference schemes.

For dense differencing when m=1 Jacobian is returned with a shape (n,),
on the other hand when n=1 Jacobian is returned with a shape (m, 1).
Our motivation is the following: a) It handles a case of gradient
computation (m=1) in a conventional way. b) It clearly separates these two
different cases. b) In all cases np.atleast_2d can be called to get 2-D
Jacobian with correct dimensions.

References
----------
.. [1] W. H. Press et. al. "Numerical Recipes. The Art of Scientific
       Computing. 3rd edition", sec. 5.7.

.. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
       sparse Jacobian matrices", Journal of the Institute of Mathematics
       and its Applications, 13 (1974), pp. 117-120.

.. [3] B. Fornberg, "Generation of Finite Difference Formulas on
       Arbitrarily Spaced Grids", Mathematics of Computation 51, 1988.

Examples
--------
>>> import numpy as np
>>> from scipy.optimize._numdiff import approx_derivative
>>>
>>> def f(x, c1, c2):
...     return np.array([x[0] * np.sin(c1 * x[1]),
...                      x[0] * np.cos(c2 * x[1])])
...
>>> x0 = np.array([1.0, 0.5 * np.pi])
>>> approx_derivative(f, x0, args=(1, 2))
array([[ 1.,  0.],
       [-1.,  0.]])

Bounds can be used to limit the region of function evaluation.
In the example below we compute left and right derivative at point 1.0.

>>> def g(x):
...     return x**2 if x >= 1 else x
...
>>> x0 = 1.0
>>> approx_derivative(g, x0, bounds=(-np.inf, 1.0))
array([ 1.])
>>> approx_derivative(g, x0, bounds=(1.0, np.inf))
array([ 2.])
)r9   r;   r:   zUnknown method 'z'. r   )r^   xpreal floatingz#`x0` must have at most 1 dimension.z,Inconsistent shapes between bounds and `x0`.z7Bounds not supported when `as_linear_operator` is True.c                    > TR                  U R                  S5      (       a  TR                  U TR                  5      n [        R                  " T" U /TQ70 TD65      nUR
                  S:  a  [        S5      eU$ )Nrv   r   z-`fun` return value has more than 1 dimension.)isdtyper   rM   r   
atleast_1dr^   rB   )r-   fargsfunkwargsr"   ru   s     r5   fun_wrapped&approx_derivative.<locals>.fun_wrapped  sm     ::agg//		!RXX&AMM#a1$1&1266A:  8 9 9r7   z&`f0` passed has more than 1 dimension.z `x0` violates bound constraints.r   r   rL   r9   r   r;   r   r:   F) r   r   xpx
atleast_ndrY   r=   rx   r   rM   r^   rb   r`   r   r   isinfry   anyrJ   _linear_operator_differencerV   rN   rO   r    r   r6   _dense_differencer   lenrr   r   rd   _sparse_difference)r|   r"   rE   rP   rT   rQ   ra   sparsityas_linear_operatorr{   r}   _x_dtyper&   r'   r~   r#   rR   rU   r(   	structurerq   ru   s   ``       ``           @r5   approx_derivativer     sF   F 11+F83788		B	

2Q2	6BZZF	zz"((O,, 
2	B	ww{>??VR(FB	xx288rxx2883GHH266"((2,#7#7')vvbhhrl';'; 9 : 	: ~
 
 
z_]]277Q;EFF	vvrBw27#$$;<<&rxx6BH*;+-A 	A &xR@A Qw&&u-1A5GA 6R-Bq(288VD !#%::c266":#>?A
 Y7Aq)R -A}y 7Aq)R -A}t^!M$["b!%2F< < H%%#h-1*<$,!	6$	&x0	""&y1	MM)4	]]6*F%k2r1&3Y&,f6 6r7   c                    ^ ^^^^ TR                   mTR                   nUS:X  a  UU UUU4S jnO+US:X  a
  U UUU4S jnOUS:X  a
  U UUU4S jnO[        S5      e[        TU4U5      $ )Nr9   c                    > [         R                  " U [         R                  " U 5      5      (       a  [         R                  " T5      $ T[	        U 5      -  nTX-  -   nT" U5      T-
  nX1-  $ )Nr   array_equalr   zerosr   )	prU   r-   dfrQ   r|   r#   rn   r"   s	       r5   matvec+_linear_operator_difference.<locals>.matvec$  sW    ~~aq!122xx{"T!WBRT	AQ"B7Nr7   r;   c                   > [         R                  " U [         R                  " U 5      5      (       a  [         R                  " T	5      $ ST-  [	        U 5      -  nT
US-  U -  -
  nT
US-  U -  -   nT" U5      nT" U5      nXT-
  nXa-  $ )Nr   r   )r   rU   x1x2f1f2r   r|   r#   rn   r"   s          r5   r   r   -  s~    ~~aq!122xx{"1tAwBr!tQhBr!tQhBRBRBB7Nr7   r:   c                    > [         R                  " U [         R                  " U 5      5      (       a  [         R                  " T5      $ T[	        U 5      -  nTX-  S-  -   nT" U5      nUR
                  nXA-  $ )N              ?)r   r   r   r   r   imag)	r   rU   r-   r   r   r|   r#   rn   r"   s	        r5   r   r   9  s`    ~~aq!122xx{"T!WBRT#XAQBB7Nr7   Never be here.)sizerB   r   )r|   r"   rQ   r#   rE   ro   r   rn   s   ````   @r5   r   r     sm    
A
A	 	 
9			 		 
4	 	 +,,1a&&))r7   c                    UR                   nUR                   n[        R                  " Xv45      nUR                  5       n	UR                  5       n
UR	                  [
        SS9n[        UR                   5       GH  nUS:X  a#  X==   X<   -  ss'   X   X   -
  nU " U	5      U-
  nOUS:X  aP  XL   (       aG  X==   X<   -  ss'   X==   SX<   -  -  ss'   X   X   -
  nU " U	5      nU " U
5      nSU-  SU-  -   U-
  nOUS:X  aD  XL   (       d;  X==   X<   -  ss'   X==   X<   -  ss'   X   X   -
  nU " U	5      nU " U
5      nUU-
  nO;US:X  a*  X==   X<   S	-  -  ss'   U " U5      nUR                  nX<   nO[        S
5      eX-  X'   X   =X'   =X'   X'   GM     US:X  a  [        R                  " U5      nUR                  $ )NT)r   r9   r;   r   g         r:   r   r   r   )r   r   emptyr   rM   complexranger   rB   ravelT)r|   r"   rQ   r#   r(   rE   rn   ro   J_transposedr   r   xcirU   r   r   r   s                    r5   r   r   H  s   
A
A88QF#L	B	B	7	&B166]YEQTMEBR2By ]%5EQTMEEQXEBRBRBQV#b(By )9EQTMEEQTMEBRBRBbBt^EQTCZERBBB/00' "%%9 < 	Avxx->>r7   c                    UR                   nUR                   n	/ n
/ n/ n[        R                  " U5      S-   n[        U5       GHC  n[        R                  " X5      nX?-  nUS:X  aJ  UU-   nUU-
  nU " U5      U-
  n[        R
                  " U5      u  n[        US S 2U4   5      u  nnnUU   nGOUS:X  Ga1  UR                  5       nUR                  5       nXO-  nUU==   UU   -  ss'   UU==   SUU   -  -  ss'   U) U-  nUU==   UU   -  ss'   UU==   UU   -  ss'   [        R                  " U	5      nUU   UU   -
  UU'   UU   UU   -
  UU'   U " U5      nU " U5      n[        R
                  " U5      u  n[        US S 2U4   5      u  nnnUU   nUU   n[        R                  " U5      nUU   nSUU   -  SUU   -  -   UU   -
  UU'   UU)    nUU   UU   -
  UU'   OaUS:X  aP  U " UUS-  -   5      nUR                  nUn[        R
                  " U5      u  n[        US S 2U4   5      u  nnnUU   nO[        S	5      eU
R                  U5        UR                  U5        UR                  UU   UU   -  5        GMF     [        R                  " U
5      n
[        R                  " U5      n[        R                  " U5      n[        XU44X4S
9n [        U 5      $ )Nr   r9   r;   r   r   r:   r   r   )r`   )r   r   maxr   equalnonzeror
   r   r   r   r   r   appendhstackr	   r   )!r|   r"   rQ   r#   r(   r   rq   rE   rn   ro   row_indicescol_indices	fractionsn_groupsgroupeh_vecr-   rU   r   colsr   j_r   r   mask_1mask_2r   r   maskrowsJs!                                    r5   r   r   t  s   
A
AKKIvvf~!HxHHU#YU
ARBQ"B JJqMED9QW-.GAq!QAy  BB"&FvJ%-'JvJ!eFm++J#^a'FvJ%-'JvJ%-'J!BFbj0BvJFbj0BvJRBRBJJqMED9QW-.GAq!QA #D!BT7DBtH}q2d8|3bh>BtHdU8D$x"T(*BtHt^R%)^$BBBJJqMED9QW-.GAq!QA-.. 	11AA'} !@ ))K(K))K(K		)$II[9:1&IAa=r7   c           	      Z   Uc  0 nU" U/UQ70 UD6n[        U5      (       a  [        XX6XES9n[        U5      nXg-
  n[        U5      u  pn[        R
                  " XyU
4   5      R                  5       n[        R                  " [        R                  " U5      [        R                  " S[        R                  " U5      5      -  5      $ [        XUXES9n[        R                  " Xg-
  5      n[        R                  " U[        R                  " S[        R                  " U5      5      -  5      $ )a|  Check correctness of a function computing derivatives (Jacobian or
gradient) by comparison with a finite difference approximation.

Parameters
----------
fun : callable
    Function of which to estimate the derivatives. The argument x
    passed to this function is ndarray of shape (n,) (never a scalar
    even if n=1). It must return 1-D array_like of shape (m,) or a scalar.
jac : callable
    Function which computes Jacobian matrix of `fun`. It must work with
    argument x the same way as `fun`. The return value must be array_like
    or sparse matrix with an appropriate shape.
x0 : array_like of shape (n,) or float
    Point at which to estimate the derivatives. Float will be converted
    to 1-D array.
bounds : 2-tuple of array_like, optional
    Lower and upper bounds on independent variables. Defaults to no bounds.
    Each bound must match the size of `x0` or be a scalar, in the latter
    case the bound will be the same for all variables. Use it to limit the
    range of function evaluation.
args, kwargs : tuple and dict, optional
    Additional arguments passed to `fun` and `jac`. Both empty by default.
    The calling signature is ``fun(x, *args, **kwargs)`` and the same
    for `jac`.

Returns
-------
accuracy : float
    The maximum among all relative errors for elements with absolute values
    higher than 1 and absolute errors for elements with absolute values
    less or equal than 1. If `accuracy` is on the order of 1e-6 or lower,
    then it is likely that your `jac` implementation is correct.

See Also
--------
approx_derivative : Compute finite difference approximation of derivative.

Examples
--------
>>> import numpy as np
>>> from scipy.optimize._numdiff import check_derivative
>>>
>>>
>>> def f(x, c1, c2):
...     return np.array([x[0] * np.sin(c1 * x[1]),
...                      x[0] * np.cos(c2 * x[1])])
...
>>> def jac(x, c1, c2):
...     return np.array([
...         [np.sin(c1 * x[1]),  c1 * x[0] * np.cos(c1 * x[1])],
...         [np.cos(c2 * x[1]), -c2 * x[0] * np.sin(c2 * x[1])]
...     ])
...
>>>
>>> x0 = np.array([1.0, 0.5 * np.pi])
>>> check_derivative(f, jac, x0, args=(1, 2))
2.4492935982947064e-16
)ra   r   r{   r}   r   )ra   r{   r}   )
r   r   r   r
   r   rY   r   r   r   r    )r|   jacr"   ra   r{   r}   	J_to_testJ_diffabs_errr   r   abs_err_dataJ_diff_datas                r5   check_derivativer     s    z ~B(((I	"36(,=y)	$!']ljj1.446vvbff\*jjBFF;$789 : 	: #36(,=&&+,vvg

1bffVn ==>>r7   )r   )"__doc__	functoolsnumpyr   numpy.linalgr   scipy.sparse.linalgr   sparser   r   r   r	   r
   _group_columnsr   r   scipy._lib._array_apir   
scipy._libr   r   r6   	lru_cacherJ   rV   rb   rr   r   r   r   r   r   r   rs   r7   r5   <module>r      s    -    . G G 5 1 -L%^ 2; 2;j.b*:z '0$w&7$).RG6T&*R)XM` -/FF7BFF*;" M?r7   