
    (ph&                     h    S SK rS SKJr  SSKJrJrJr  SSKJ	r	J
r
   " S S\	5      r " S S	\
5      rg)
    N)ode   )validate_tolvalidate_first_stepwarn_extraneous)	OdeSolverDenseOutputc            	       b   ^  \ rS rSrSrSS\R                  SSSSSS4	U 4S jjrS	 rS
 r	Sr
U =r$ )LSODA   ap  Adams/BDF method with automatic stiffness detection and switching.

This is a wrapper to the Fortran solver from ODEPACK [1]_. It switches
automatically between the nonstiff Adams method and the stiff BDF method.
The method was originally detailed in [2]_.

Parameters
----------
fun : callable
    Right-hand side of the system: the time derivative of the state ``y``
    at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
    scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
    return an array of the same shape as ``y``. See `vectorized` for more
    information.
t0 : float
    Initial time.
y0 : array_like, shape (n,)
    Initial state.
t_bound : float
    Boundary time - the integration won't continue beyond it. It also
    determines the direction of the integration.
first_step : float or None, optional
    Initial step size. Default is ``None`` which means that the algorithm
    should choose.
min_step : float, optional
    Minimum allowed step size. Default is 0.0, i.e., the step size is not
    bounded and determined solely by the solver.
max_step : float, optional
    Maximum allowed step size. Default is np.inf, i.e., the step size is not
    bounded and determined solely by the solver.
rtol, atol : float and array_like, optional
    Relative and absolute tolerances. The solver keeps the local error
    estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
    relative accuracy (number of correct digits), while `atol` controls
    absolute accuracy (number of correct decimal places). To achieve the
    desired `rtol`, set `atol` to be smaller than the smallest value that
    can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
    allowable error. If `atol` is larger than ``rtol * abs(y)`` the
    number of correct digits is not guaranteed. Conversely, to achieve the
    desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
    than `atol`. If components of y have different scales, it might be
    beneficial to set different `atol` values for different components by
    passing array_like with shape (n,) for `atol`. Default values are
    1e-3 for `rtol` and 1e-6 for `atol`.
jac : None or callable, optional
    Jacobian matrix of the right-hand side of the system with respect to
    ``y``. The Jacobian matrix has shape (n, n) and its element (i, j) is
    equal to ``d f_i / d y_j``. The function will be called as
    ``jac(t, y)``. If None (default), the Jacobian will be
    approximated by finite differences. It is generally recommended to
    provide the Jacobian rather than relying on a finite-difference
    approximation.
lband, uband : int or None
    Parameters defining the bandwidth of the Jacobian,
    i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``. Setting
    these requires your jac routine to return the Jacobian in the packed format:
    the returned array must have ``n`` columns and ``uband + lband + 1``
    rows in which Jacobian diagonals are written. Specifically
    ``jac_packed[uband + i - j , j] = jac[i, j]``. The same format is used
    in `scipy.linalg.solve_banded` (check for an illustration).
    These parameters can be also used with ``jac=None`` to reduce the
    number of Jacobian elements estimated by finite differences.
vectorized : bool, optional
    Whether `fun` may be called in a vectorized fashion. False (default)
    is recommended for this solver.

    If ``vectorized`` is False, `fun` will always be called with ``y`` of
    shape ``(n,)``, where ``n = len(y0)``.

    If ``vectorized`` is True, `fun` may be called with ``y`` of shape
    ``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
    such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
    the returned array is the time derivative of the state corresponding
    with a column of ``y``).

    Setting ``vectorized=True`` allows for faster finite difference
    approximation of the Jacobian by methods 'Radau' and 'BDF', but
    will result in slower execution for this solver.

Attributes
----------
n : int
    Number of equations.
status : string
    Current status of the solver: 'running', 'finished' or 'failed'.
t_bound : float
    Boundary time.
direction : float
    Integration direction: +1 or -1.
t : float
    Current time.
y : ndarray
    Current state.
t_old : float
    Previous time. None if no steps were made yet.
nfev : int
    Number of evaluations of the right-hand side.
njev : int
    Number of evaluations of the Jacobian.

References
----------
.. [1] A. C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE
       Solvers," IMACS Transactions on Scientific Computation, Vol 1.,
       pp. 55-64, 1983.
.. [2] L. Petzold, "Automatic selection of methods for solving stiff and
       nonstiff systems of ordinary differential equations", SIAM Journal
       on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148,
       1983.
Ng        gMbP?gư>Fc                 @  > [        U5        [        TU ]	  XX4U5        Uc  SnO[        XRU5      nXPR                  -  nU[
        R                  :X  a  SnOUS::  a  [        S5      eUS:  a  [        S5      e[        XU R                  5      u  p[        U R                  U
5      nUR                  SXUXeXS9  UR                  X25        U R                  UR                  R                   S'   UR                  R                   UR                  R"                  S'   Xl        g )Nr   z`max_step` must be positive.z`min_step` must be nonnegative.lsoda)rtolatolmax_stepmin_step
first_steplbanduband   )r   super__init__r   	directionnpinf
ValueErrorr   nr   funset_integratorset_initial_valuet_bound_integratorrwork	call_args_lsoda_solver)selfr   t0y0r!   r   r   r   r   r   jacr   r   
vectorized
extraneoussolver	__class__s                   M/var/www/html/venv/lib/python3.13/site-packages/scipy/integrate/_ivp/lsoda.pyr   LSODA.__init__v   s    	
#"z:J,ZWEJnn$
rvvH];<<a<>??!$dff5
TXXs#gDh'/$) 	 	8 	  ( '+ll  #*0*<*<*B*B$$Q'#    c           	      4   U R                   nUR                  nUR                  S   nSUR                  S'   UR                  UR                  UR
                  =(       d    S UR                  UR                  U R                  UR                  UR                  5      u  Ul        Ul        X2R                  S'   UR                  5       (       aK  UR                  U l        UR                  U l        UR                  S   U l        UR                  S   U l        gg)N      c                      g )N r5   r0   r.   <lambda>"LSODA._step_impl.<locals>.<lambda>   s    Tr0      )TN)FzUnexpected istate in LSODA.)r%   r"   r$   runfr)   _ytr!   f_params
jac_params
successfulyiworknjevnlu)r&   r,   
integratoritasks       r.   
_step_implLSODA._step_impl   s    ##''
 $$Q'"#
Q(nnHHfjj2\FIIvxxLL&//6+<+<>	68 #(QXXDFYYDF"((,DI!''+DH7r0   c                    U R                   R                  R                  nU R                   R                  R                  nUS   nUS   n[        R
                  " USSUS-   U R                  -  -    U R                  US-   4SS9R                  5       nUS   U:  a  US S 2S4==   XBS	   -  U-  -  ss'   [        U R                  U R                  XCU5      $ )
N         r   F)order   
   )r%   r"   rA   r#   r   reshaper   copyLsodaDenseOutputt_oldr<   )r&   rA   r#   rM   hyhs         r.   _dense_output_implLSODA._dense_output_impl   s    ""..44""..44 b	 "I ZZbuqyDFF&:!:;+388< 	9u q"uI!Bi-E11I

DFFAbAAr0   )r%   rB   rC   r<   r@   )__name__
__module____qualname____firstlineno____doc__r   r   r   rF   rW   __static_attributes____classcell__r-   s   @r.   r   r      s<    m\ 9=s&&t$D!$F8. B  Br0   r   c                   .   ^  \ rS rSrU 4S jrS rSrU =r$ )rS      c                 x   > [         TU ]  X5        X0l        XPl        [        R
                  " US-   5      U l        g )Nr   )r   r   rU   rV   r   arangep)r&   rT   r<   rU   rM   rV   r-   s         r.   r   LsodaDenseOutput.__init__   s.    "519%r0   c                    UR                   S:X  a)  XR                  -
  U R                  -  U R                  -  nO/XR                  -
  U R                  -  U R                  S S 2S 4   -  n[        R
                  " U R                  U5      $ )Nr   )ndimr<   rU   re   r   dotrV   )r&   r<   xs      r.   
_call_implLsodaDenseOutput._call_impl   sd    66Q;ff*&4661Aff*&466!T'?:Avvdggq!!r0   )rU   re   rV   )rY   rZ   r[   r\   r   rk   r^   r_   r`   s   @r.   rS   rS      s    &" "r0   rS   )numpyr   scipy.integrater   commonr   r   r   baser   r	   r   rS   r5   r0   r.   <module>rq      s1      F F (IBI IBX"{ "r0   