
    (phK                         S r / SQrSSKJr  SSKJr  SSSSS	.rSS jrSS jrSS jr	SS jr
SS jrSS jrSS jrSS jrg
)z+
Real spectrum transforms (DCT, DST, MDCT)
)dctidctdstidstdctnidctndstnidstn    )
_pocketfft   )_good_shape         )r   r   r   r   Nc                 J    [        XU5      n[        R                  " XX#XE5      $ )a  
Return multidimensional Discrete Cosine Transform along the specified axes.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DCT (see Notes). Default type is 2.
shape : int or array_like of ints or None, optional
    The shape of the result. If both `shape` and `axes` (see below) are
    None, `shape` is ``x.shape``; if `shape` is None but `axes` is
    not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
    If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
    If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
    length ``shape[i]``.
    If any element of `shape` is -1, the size of the corresponding
    dimension of `x` is used.
axes : int or array_like of ints or None, optional
    Axes along which the DCT is computed.
    The default is over all axes.
norm : {None, 'ortho'}, optional
    Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.

Returns
-------
y : ndarray of real
    The transformed input array.

See Also
--------
idctn : Inverse multidimensional DCT

Notes
-----
For full details of the DCT types and normalization modes, as well as
references, see `dct`.

Examples
--------
>>> import numpy as np
>>> from scipy.fftpack import dctn, idctn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
True

)r   r   r   xtypeshapeaxesnormoverwrite_xs         P/var/www/html/venv/lib/python3.13/site-packages/scipy/fftpack/_realtransforms.pyr   r      $    f $'E??1ECC    c                 \    [         U   n[        XU5      n[        R                  " XX#XE5      $ )a  
Return multidimensional Discrete Cosine Transform along the specified axes.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DCT (see Notes). Default type is 2.
shape : int or array_like of ints or None, optional
    The shape of the result.  If both `shape` and `axes` (see below) are
    None, `shape` is ``x.shape``; if `shape` is None but `axes` is
    not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
    If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
    If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
    length ``shape[i]``.
    If any element of `shape` is -1, the size of the corresponding
    dimension of `x` is used.
axes : int or array_like of ints or None, optional
    Axes along which the IDCT is computed.
    The default is over all axes.
norm : {None, 'ortho'}, optional
    Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.

Returns
-------
y : ndarray of real
    The transformed input array.

See Also
--------
dctn : multidimensional DCT

Notes
-----
For full details of the IDCT types and normalization modes, as well as
references, see `idct`.

Examples
--------
>>> import numpy as np
>>> from scipy.fftpack import dctn, idctn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
True

)_inverse_typemapr   r   r   r   s         r   r   r   D   .    f D!D$'E??1ECCr   c                 J    [        XU5      n[        R                  " XX#XE5      $ )a  
Return multidimensional Discrete Sine Transform along the specified axes.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DST (see Notes). Default type is 2.
shape : int or array_like of ints or None, optional
    The shape of the result.  If both `shape` and `axes` (see below) are
    None, `shape` is ``x.shape``; if `shape` is None but `axes` is
    not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
    If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
    If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
    length ``shape[i]``.
    If any element of `shape` is -1, the size of the corresponding
    dimension of `x` is used.
axes : int or array_like of ints or None, optional
    Axes along which the DCT is computed.
    The default is over all axes.
norm : {None, 'ortho'}, optional
    Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.

Returns
-------
y : ndarray of real
    The transformed input array.

See Also
--------
idstn : Inverse multidimensional DST

Notes
-----
For full details of the DST types and normalization modes, as well as
references, see `dst`.

Examples
--------
>>> import numpy as np
>>> from scipy.fftpack import dstn, idstn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
True

)r   r   r   r   s         r   r   r   |   r   r   c                 \    [         U   n[        XU5      n[        R                  " XX#XE5      $ )a  
Return multidimensional Discrete Sine Transform along the specified axes.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DST (see Notes). Default type is 2.
shape : int or array_like of ints or None, optional
    The shape of the result.  If both `shape` and `axes` (see below) are
    None, `shape` is ``x.shape``; if `shape` is None but `axes` is
    not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
    If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
    If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
    length ``shape[i]``.
    If any element of `shape` is -1, the size of the corresponding
    dimension of `x` is used.
axes : int or array_like of ints or None, optional
    Axes along which the IDST is computed.
    The default is over all axes.
norm : {None, 'ortho'}, optional
    Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.

Returns
-------
y : ndarray of real
    The transformed input array.

See Also
--------
dstn : multidimensional DST

Notes
-----
For full details of the IDST types and normalization modes, as well as
references, see `idst`.

Examples
--------
>>> import numpy as np
>>> from scipy.fftpack import dstn, idstn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
True

)r   r   r   r   r   s         r   r	   r	      r   r   c                 2    [         R                  " XX#XE5      $ )aH  
Return the Discrete Cosine Transform of arbitrary type sequence x.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DCT (see Notes). Default type is 2.
n : int, optional
    Length of the transform.  If ``n < x.shape[axis]``, `x` is
    truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
    default results in ``n = x.shape[axis]``.
axis : int, optional
    Axis along which the dct is computed; the default is over the
    last axis (i.e., ``axis=-1``).
norm : {None, 'ortho'}, optional
    Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.

Returns
-------
y : ndarray of real
    The transformed input array.

See Also
--------
idct : Inverse DCT

Notes
-----
For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
MATLAB ``dct(x)``.

There are, theoretically, 8 types of the DCT, only the first 4 types are
implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the'
Inverse DCT generally refers to DCT type 3.

**Type I**

There are several definitions of the DCT-I; we use the following
(for ``norm=None``)

.. math::

   y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left(
   \frac{\pi k n}{N-1} \right)

If ``norm='ortho'``, ``x[0]`` and ``x[N-1]`` are multiplied by a scaling
factor of :math:`\sqrt{2}`, and ``y[k]`` is multiplied by a scaling factor
``f``

.. math::

    f = \begin{cases}
     \frac{1}{2}\sqrt{\frac{1}{N-1}} & \text{if }k=0\text{ or }N-1, \\
     \frac{1}{2}\sqrt{\frac{2}{N-1}} & \text{otherwise} \end{cases}

.. versionadded:: 1.2.0
   Orthonormalization in DCT-I.

.. note::
   The DCT-I is only supported for input size > 1.

**Type II**

There are several definitions of the DCT-II; we use the following
(for ``norm=None``)

.. math::

   y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right)

If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``

.. math::
   f = \begin{cases}
   \sqrt{\frac{1}{4N}} & \text{if }k=0, \\
   \sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}

which makes the corresponding matrix of coefficients orthonormal
(``O @ O.T = np.eye(N)``).

**Type III**

There are several definitions, we use the following (for ``norm=None``)

.. math::

   y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right)

or, for ``norm='ortho'``

.. math::

   y_k = \frac{x_0}{\sqrt{N}} + \sqrt{\frac{2}{N}} \sum_{n=1}^{N-1} x_n
   \cos\left(\frac{\pi(2k+1)n}{2N}\right)

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
to a factor ``2N``. The orthonormalized DCT-III is exactly the inverse of
the orthonormalized DCT-II.

**Type IV**

There are several definitions of the DCT-IV; we use the following
(for ``norm=None``)

.. math::

   y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right)

If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``

.. math::

    f = \frac{1}{\sqrt{2N}}

.. versionadded:: 1.2.0
   Support for DCT-IV.

References
----------
.. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
       Makhoul, `IEEE Transactions on acoustics, speech and signal
       processing` vol. 28(1), pp. 27-34,
       :doi:`10.1109/TASSP.1980.1163351` (1980).
.. [2] Wikipedia, "Discrete cosine transform",
       https://en.wikipedia.org/wiki/Discrete_cosine_transform

Examples
--------
The Type 1 DCT is equivalent to the FFT (though faster) for real,
even-symmetrical inputs. The output is also real and even-symmetrical.
Half of the FFT input is used to generate half of the FFT output:

>>> from scipy.fftpack import fft, dct
>>> import numpy as np
>>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
array([ 30.,  -8.,   6.,  -2.,   6.,  -8.])
>>> dct(np.array([4., 3., 5., 10.]), 1)
array([ 30.,  -8.,   6.,  -2.])

)r   r   r   r   naxisr   r   s         r   r   r      s    b >>!1D>>r   c                 D    [         U   n[        R                  " XX#XE5      $ )a  
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DCT (see Notes). Default type is 2.
n : int, optional
    Length of the transform.  If ``n < x.shape[axis]``, `x` is
    truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
    default results in ``n = x.shape[axis]``.
axis : int, optional
    Axis along which the idct is computed; the default is over the
    last axis (i.e., ``axis=-1``).
norm : {None, 'ortho'}, optional
    Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.

Returns
-------
idct : ndarray of real
    The transformed input array.

See Also
--------
dct : Forward DCT

Notes
-----
For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
MATLAB ``idct(x)``.

'The' IDCT is the IDCT of type 2, which is the same as DCT of type 3.

IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type
3, and IDCT of type 3 is the DCT of type 2. IDCT of type 4 is the DCT
of type 4. For the definition of these types, see `dct`.

Examples
--------
The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
inputs. The output is also real and even-symmetrical. Half of the IFFT
input is used to generate half of the IFFT output:

>>> from scipy.fftpack import ifft, idct
>>> import numpy as np
>>> ifft(np.array([ 30.,  -8.,   6.,  -2.,   6.,  -8.])).real
array([  4.,   3.,   5.,  10.,   5.,   3.])
>>> idct(np.array([ 30.,  -8.,   6.,  -2.]), 1) / 6
array([  4.,   3.,   5.,  10.])

)r   r   r   r"   s         r   r   r     s"    p D!D>>!1D>>r   c                 2    [         R                  " XX#XE5      $ )a  
Return the Discrete Sine Transform of arbitrary type sequence x.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DST (see Notes). Default type is 2.
n : int, optional
    Length of the transform.  If ``n < x.shape[axis]``, `x` is
    truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
    default results in ``n = x.shape[axis]``.
axis : int, optional
    Axis along which the dst is computed; the default is over the
    last axis (i.e., ``axis=-1``).
norm : {None, 'ortho'}, optional
    Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.

Returns
-------
dst : ndarray of reals
    The transformed input array.

See Also
--------
idst : Inverse DST

Notes
-----
For a single dimension array ``x``.

There are, theoretically, 8 types of the DST for different combinations of
even/odd boundary conditions and boundary off sets [1]_, only the first
4 types are implemented in scipy.

**Type I**

There are several definitions of the DST-I; we use the following
for ``norm=None``. DST-I assumes the input is odd around `n=-1` and `n=N`.

.. math::

    y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)

Note that the DST-I is only supported for input size > 1.
The (unnormalized) DST-I is its own inverse, up to a factor ``2(N+1)``.
The orthonormalized DST-I is exactly its own inverse.

**Type II**

There are several definitions of the DST-II; we use the following for
``norm=None``. DST-II assumes the input is odd around `n=-1/2` and
`n=N-1/2`; the output is odd around :math:`k=-1` and even around `k=N-1`

.. math::

    y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)

if ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``

.. math::

    f = \begin{cases}
    \sqrt{\frac{1}{4N}} & \text{if }k = 0, \\
    \sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}

**Type III**

There are several definitions of the DST-III, we use the following (for
``norm=None``). DST-III assumes the input is odd around `n=-1` and even
around `n=N-1`

.. math::

    y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
    \frac{\pi(2k+1)(n+1)}{2N}\right)

The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
to a factor ``2N``. The orthonormalized DST-III is exactly the inverse of the
orthonormalized DST-II.

.. versionadded:: 0.11.0

**Type IV**

There are several definitions of the DST-IV, we use the following (for
``norm=None``). DST-IV assumes the input is odd around `n=-0.5` and even
around `n=N-0.5`

.. math::

    y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)

The (unnormalized) DST-IV is its own inverse, up to a factor ``2N``. The
orthonormalized DST-IV is exactly its own inverse.

.. versionadded:: 1.2.0
   Support for DST-IV.

References
----------
.. [1] Wikipedia, "Discrete sine transform",
       https://en.wikipedia.org/wiki/Discrete_sine_transform

)r   r   r"   s         r   r   r     s    Z >>!1D>>r   c                 D    [         U   n[        R                  " XX#XE5      $ )aM  
Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DST (see Notes). Default type is 2.
n : int, optional
    Length of the transform.  If ``n < x.shape[axis]``, `x` is
    truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
    default results in ``n = x.shape[axis]``.
axis : int, optional
    Axis along which the idst is computed; the default is over the
    last axis (i.e., ``axis=-1``).
norm : {None, 'ortho'}, optional
    Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.

Returns
-------
idst : ndarray of real
    The transformed input array.

See Also
--------
dst : Forward DST

Notes
-----
'The' IDST is the IDST of type 2, which is the same as DST of type 3.

IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type
3, and IDST of type 3 is the DST of type 2. For the definition of these
types, see `dst`.

.. versionadded:: 0.11.0

)r   r   r   r"   s         r   r   r   +  s"    T D!D>>!1D>>r   )r   NNNF)r   NNF)__doc____all__	scipy.fftr   _helperr   r   r   r   r   r	   r   r   r   r    r   r   <module>r.      s\    K    Q1+ 4Dn5Dp4Dn5DpQ?h9?xm?`+?r   