
    (ph                     ^    S SK r S SKrS SKJrJrJr  S SKJs  J	s  J
r  / SQrSS jrS rS rg)    N)fftshift	ifftshiftfftfreq)r   r   r   rfftfreqnext_fast_lenc                     [         R                  " U 5      n U S:  a  [        SU  S35      e[        R                  " SU S-   [
        S9S-  [        X-  5      -  $ )aJ  DFT sample frequencies (for usage with rfft, irfft).

The returned float array contains the frequency bins in
cycles/unit (with zero at the start) given a window length `n` and a
sample spacing `d`::

  f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2]/(d*n)   if n is even
  f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2,n/2]/(d*n)   if n is odd

Parameters
----------
n : int
    Window length.
d : scalar, optional
    Sample spacing. Default is 1.

Returns
-------
out : ndarray
    The array of length `n`, containing the sample frequencies.

Examples
--------
>>> import numpy as np
>>> from scipy import fftpack
>>> sig = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> sig_fft = fftpack.rfft(sig)
>>> n = sig_fft.size
>>> timestep = 0.1
>>> freq = fftpack.rfftfreq(n, d=timestep)
>>> freq
array([ 0.  ,  1.25,  1.25,  2.5 ,  2.5 ,  3.75,  3.75,  5.  ])

r   zn = z/ is not valid. n must be a nonnegative integer.   )dtype   )operatorindex
ValueErrornparangeintfloat)nds     H/var/www/html/venv/lib/python3.13/site-packages/scipy/fftpack/_helper.pyr   r      s`    F 	qA1u4s #< < = 	= IIaQc*a/5<??    c                 0    [         R                  " U S5      $ )a  
Find the next fast size of input data to `fft`, for zero-padding, etc.

SciPy's FFTPACK has efficient functions for radix {2, 3, 4, 5}, so this
returns the next composite of the prime factors 2, 3, and 5 which is
greater than or equal to `target`. (These are also known as 5-smooth
numbers, regular numbers, or Hamming numbers.)

Parameters
----------
target : int
    Length to start searching from. Must be a positive integer.

Returns
-------
out : int
    The first 5-smooth number greater than or equal to `target`.

Notes
-----
.. versionadded:: 0.18.0

Examples
--------
On a particular machine, an FFT of prime length takes 133 ms:

>>> from scipy import fftpack
>>> import numpy as np
>>> rng = np.random.default_rng()
>>> min_len = 10007  # prime length is worst case for speed
>>> a = rng.standard_normal(min_len)
>>> b = fftpack.fft(a)

Zero-padding to the next 5-smooth length reduces computation time to
211 us, a speedup of 630 times:

>>> fftpack.next_fast_len(min_len)
10125
>>> b = fftpack.fft(a, 10125)

Rounding up to the next power of 2 is not optimal, taking 367 us to
compute, 1.7 times as long as the 5-smooth size:

>>> b = fftpack.fft(a, 16384)

T)_helper	good_size)targets    r   r   r   6   s    ` VT**r   c                     UbH  UcE  [         R                  " US5      n[        U5      [        R                  " U 5      :w  a  [        S5      eU$ )zEnsure that shape argument is valid for scipy.fftpack

scipy.fftpack does not support len(shape) < x.ndim when axes is not given.
shapezBwhen given, axes and shape arguments have to be of the same length)r   _iterable_of_intlenr   ndimr   )xr   axess      r   _good_shaper"   i   sK    
 T\((8u:# > ? ?Lr   )g      ?)r   numpyr   	numpy.fftr   r   r   scipy.fft._pocketfft.helperfft
_pocketffthelperr   __all__r   r   r"    r   r   <module>r+      s.      2 2 - -
K(@V0+f
r   