ó
    ƒ(ph*c  ã                   óô   • S SK Jr  SSKJr  SSKr/ SQr\  SSS.S jj5       r\  SS j5       r\  SS	 j5       r	\  SS
 j5       r
\  SS j5       r\  SS j5       r\  SS j5       r\  SS j5       rg)é   )Ú	_dispatché    )ÚDispatchableN)ÚdctÚidctÚdstÚidstÚdctnÚidctnÚdstnÚidstn)Úorthogonalizec                ó8   • [        U [        R                  5      4$ )aŸ  
Return multidimensional Discrete Cosine Transform along the specified axes.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DCT (see Notes). Default type is 2.
s : int or array_like of ints or None, optional
    The shape of the result. If both `s` and `axes` (see below) are None,
    `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
    ``numpy.take(x.shape, axes, axis=0)``.
    If ``s[i] > x.shape[i]``, the ith dimension of the input is padded with zeros.
    If ``s[i] < x.shape[i]``, the ith dimension of the input is truncated to length
    ``s[i]``.
    If any element of `s` is -1, the size of the corresponding dimension of
    `x` is used.
axes : int or array_like of ints or None, optional
    Axes over which the DCT is computed. If not given, the last ``len(s)``
    axes are used, or all axes if `s` is also not specified.
norm : {"backward", "ortho", "forward"}, optional
    Normalization mode (see Notes). Default is "backward".
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.
workers : int, optional
    Maximum number of workers to use for parallel computation. If negative,
    the value wraps around from ``os.cpu_count()``.
    See :func:`~scipy.fft.fft` for more details.
orthogonalize : bool, optional
    Whether to use the orthogonalized DCT variant (see Notes).
    Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.

    .. versionadded:: 1.8.0

Returns
-------
y : ndarray of real
    The transformed input array.

See Also
--------
idctn : Inverse multidimensional DCT

Notes
-----
For full details of the DCT types and normalization modes, as well as
references, see `dct`.

Examples
--------
>>> import numpy as np
>>> from scipy.fft import dctn, idctn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idctn(dctn(y)))
True

©r   ÚnpÚndarray©ÚxÚtypeÚsÚaxesÚnormÚoverwrite_xÚworkersr   s           ÚL/var/www/html/venv/lib/python3.13/site-packages/scipy/fft/_realtransforms.pyr
   r
      ó   € ô| ˜œBŸJ™JÓ'Ð)Ð)ó    c                 ó8   • [        U [        R                  5      4$ )a£  
Return multidimensional Inverse Discrete Cosine Transform along the specified axes.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DCT (see Notes). Default type is 2.
s : int or array_like of ints or None, optional
    The shape of the result.  If both `s` and `axes` (see below) are
    None, `s` is ``x.shape``; if `s` is None but `axes` is
    not None, then `s` is ``numpy.take(x.shape, axes, axis=0)``.
    If ``s[i] > x.shape[i]``, the ith dimension of the input is padded with zeros.
    If ``s[i] < x.shape[i]``, the ith dimension of the input is truncated to length
    ``s[i]``.
    If any element of `s` is -1, the size of the corresponding dimension of
    `x` is used.
axes : int or array_like of ints or None, optional
    Axes over which the IDCT is computed. If not given, the last ``len(s)``
    axes are used, or all axes if `s` is also not specified.
norm : {"backward", "ortho", "forward"}, optional
    Normalization mode (see Notes). Default is "backward".
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.
workers : int, optional
    Maximum number of workers to use for parallel computation. If negative,
    the value wraps around from ``os.cpu_count()``.
    See :func:`~scipy.fft.fft` for more details.
orthogonalize : bool, optional
    Whether to use the orthogonalized IDCT variant (see Notes).
    Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.

    .. versionadded:: 1.8.0

Returns
-------
y : ndarray of real
    The transformed input array.

See Also
--------
dctn : multidimensional DCT

Notes
-----
For full details of the IDCT types and normalization modes, as well as
references, see `idct`.

Examples
--------
>>> import numpy as np
>>> from scipy.fft import dctn, idctn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idctn(dctn(y)))
True

r   r   s           r   r   r   I   r   r   c                 ó8   • [        U [        R                  5      4$ )a¢  
Return multidimensional Discrete Sine Transform along the specified axes.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DST (see Notes). Default type is 2.
s : int or array_like of ints or None, optional
    The shape of the result.  If both `s` and `axes` (see below) are None,
    `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
    ``numpy.take(x.shape, axes, axis=0)``.
    If ``s[i] > x.shape[i]``, the ith dimension of the input is padded with zeros.
    If ``s[i] < x.shape[i]``, the ith dimension of the input is truncated to length
    ``s[i]``.
    If any element of `shape` is -1, the size of the corresponding dimension
    of `x` is used.
axes : int or array_like of ints or None, optional
    Axes over which the DST is computed. If not given, the last ``len(s)``
    axes are used, or all axes if `s` is also not specified.
norm : {"backward", "ortho", "forward"}, optional
    Normalization mode (see Notes). Default is "backward".
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.
workers : int, optional
    Maximum number of workers to use for parallel computation. If negative,
    the value wraps around from ``os.cpu_count()``.
    See :func:`~scipy.fft.fft` for more details.
orthogonalize : bool, optional
    Whether to use the orthogonalized DST variant (see Notes).
    Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.

    .. versionadded:: 1.8.0

Returns
-------
y : ndarray of real
    The transformed input array.

See Also
--------
idstn : Inverse multidimensional DST

Notes
-----
For full details of the DST types and normalization modes, as well as
references, see `dst`.

Examples
--------
>>> import numpy as np
>>> from scipy.fft import dstn, idstn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idstn(dstn(y)))
True

r   r   s           r   r   r   Š   r   r   c                 ó8   • [        U [        R                  5      4$ )a¡  
Return multidimensional Inverse Discrete Sine Transform along the specified axes.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DST (see Notes). Default type is 2.
s : int or array_like of ints or None, optional
    The shape of the result.  If both `s` and `axes` (see below) are None,
    `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
    ``numpy.take(x.shape, axes, axis=0)``.
    If ``s[i] > x.shape[i]``, the ith dimension of the input is padded with zeros.
    If ``s[i] < x.shape[i]``, the ith dimension of the input is truncated to length
    ``s[i]``.
    If any element of `s` is -1, the size of the corresponding dimension of
    `x` is used.
axes : int or array_like of ints or None, optional
    Axes over which the IDST is computed. If not given, the last ``len(s)``
    axes are used, or all axes if `s` is also not specified.
norm : {"backward", "ortho", "forward"}, optional
    Normalization mode (see Notes). Default is "backward".
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.
workers : int, optional
    Maximum number of workers to use for parallel computation. If negative,
    the value wraps around from ``os.cpu_count()``.
    See :func:`~scipy.fft.fft` for more details.
orthogonalize : bool, optional
    Whether to use the orthogonalized IDST variant (see Notes).
    Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.

    .. versionadded:: 1.8.0

Returns
-------
y : ndarray of real
    The transformed input array.

See Also
--------
dstn : multidimensional DST

Notes
-----
For full details of the IDST types and normalization modes, as well as
references, see `idst`.

Examples
--------
>>> import numpy as np
>>> from scipy.fft import dstn, idstn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idstn(dstn(y)))
True

r   r   s           r   r   r   Ë   r   r   c                 ó8   • [        U [        R                  5      4$ )a7  Return the Discrete Cosine Transform of arbitrary type sequence x.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DCT (see Notes). Default type is 2.
n : int, optional
    Length of the transform.  If ``n < x.shape[axis]``, `x` is
    truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
    default results in ``n = x.shape[axis]``.
axis : int, optional
    Axis along which the dct is computed; the default is over the
    last axis (i.e., ``axis=-1``).
norm : {"backward", "ortho", "forward"}, optional
    Normalization mode (see Notes). Default is "backward".
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.
workers : int, optional
    Maximum number of workers to use for parallel computation. If negative,
    the value wraps around from ``os.cpu_count()``.
    See :func:`~scipy.fft.fft` for more details.
orthogonalize : bool, optional
    Whether to use the orthogonalized DCT variant (see Notes).
    Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.

    .. versionadded:: 1.8.0

Returns
-------
y : ndarray of real
    The transformed input array.

See Also
--------
idct : Inverse DCT

Notes
-----
For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
MATLAB ``dct(x)``.

.. warning:: For ``type in {1, 2, 3}``, ``norm="ortho"`` breaks the direct
             correspondence with the direct Fourier transform. To recover
             it you must specify ``orthogonalize=False``.

For ``norm="ortho"`` both the `dct` and `idct` are scaled by the same
overall factor in both directions. By default, the transform is also
orthogonalized which for types 1, 2 and 3 means the transform definition is
modified to give orthogonality of the DCT matrix (see below).

For ``norm="backward"``, there is no scaling on `dct` and the `idct` is
scaled by ``1/N`` where ``N`` is the "logical" size of the DCT. For
``norm="forward"`` the ``1/N`` normalization is applied to the forward
`dct` instead and the `idct` is unnormalized.

There are, theoretically, 8 types of the DCT, only the first 4 types are
implemented in SciPy.'The' DCT generally refers to DCT type 2, and 'the'
Inverse DCT generally refers to DCT type 3.

**Type I**

There are several definitions of the DCT-I; we use the following
(for ``norm="backward"``)

.. math::

   y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left(
   \frac{\pi k n}{N-1} \right)

If ``orthogonalize=True``, ``x[0]`` and ``x[N-1]`` are multiplied by a
scaling factor of :math:`\sqrt{2}`, and ``y[0]`` and ``y[N-1]`` are divided
by :math:`\sqrt{2}`. When combined with ``norm="ortho"``, this makes the
corresponding matrix of coefficients orthonormal (``O @ O.T = np.eye(N)``).

.. note::
   The DCT-I is only supported for input size > 1.

**Type II**

There are several definitions of the DCT-II; we use the following
(for ``norm="backward"``)

.. math::

   y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right)

If ``orthogonalize=True``, ``y[0]`` is divided by :math:`\sqrt{2}` which,
when combined with ``norm="ortho"``, makes the corresponding matrix of
coefficients orthonormal (``O @ O.T = np.eye(N)``).

**Type III**

There are several definitions, we use the following (for
``norm="backward"``)

.. math::

   y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right)

If ``orthogonalize=True``, ``x[0]`` terms are multiplied by
:math:`\sqrt{2}` which, when combined with ``norm="ortho"``, makes the
corresponding matrix of coefficients orthonormal (``O @ O.T = np.eye(N)``).

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
the orthonormalized DCT-II.

**Type IV**

There are several definitions of the DCT-IV; we use the following
(for ``norm="backward"``)

.. math::

   y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right)

``orthogonalize`` has no effect here, as the DCT-IV matrix is already
orthogonal up to a scale factor of ``2N``.

References
----------
.. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
       Makhoul, `IEEE Transactions on acoustics, speech and signal
       processing` vol. 28(1), pp. 27-34,
       :doi:`10.1109/TASSP.1980.1163351` (1980).
.. [2] Wikipedia, "Discrete cosine transform",
       https://en.wikipedia.org/wiki/Discrete_cosine_transform

Examples
--------
The Type 1 DCT is equivalent to the FFT (though faster) for real,
even-symmetrical inputs. The output is also real and even-symmetrical.
Half of the FFT input is used to generate half of the FFT output:

>>> from scipy.fft import fft, dct
>>> import numpy as np
>>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
array([ 30.,  -8.,   6.,  -2.,   6.,  -8.])
>>> dct(np.array([4., 3., 5., 10.]), 1)
array([ 30.,  -8.,   6.,  -2.])

r   ©r   r   ÚnÚaxisr   r   r   r   s           r   r   r     s   € ôf ˜œBŸJ™JÓ'Ð)Ð)r   c                 ó8   • [        U [        R                  5      4$ )a
  
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DCT (see Notes). Default type is 2.
n : int, optional
    Length of the transform.  If ``n < x.shape[axis]``, `x` is
    truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
    default results in ``n = x.shape[axis]``.
axis : int, optional
    Axis along which the idct is computed; the default is over the
    last axis (i.e., ``axis=-1``).
norm : {"backward", "ortho", "forward"}, optional
    Normalization mode (see Notes). Default is "backward".
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.
workers : int, optional
    Maximum number of workers to use for parallel computation. If negative,
    the value wraps around from ``os.cpu_count()``.
    See :func:`~scipy.fft.fft` for more details.
orthogonalize : bool, optional
    Whether to use the orthogonalized IDCT variant (see Notes).
    Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.

    .. versionadded:: 1.8.0

Returns
-------
idct : ndarray of real
    The transformed input array.

See Also
--------
dct : Forward DCT

Notes
-----
For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
MATLAB ``idct(x)``.

.. warning:: For ``type in {1, 2, 3}``, ``norm="ortho"`` breaks the direct
             correspondence with the inverse direct Fourier transform. To
             recover it you must specify ``orthogonalize=False``.

For ``norm="ortho"`` both the `dct` and `idct` are scaled by the same
overall factor in both directions. By default, the transform is also
orthogonalized which for types 1, 2 and 3 means the transform definition is
modified to give orthogonality of the IDCT matrix (see `dct` for the full
definitions).

'The' IDCT is the IDCT-II, which is the same as the normalized DCT-III.

The IDCT is equivalent to a normal DCT except for the normalization and
type. DCT type 1 and 4 are their own inverse and DCTs 2 and 3 are each
other's inverses.

Examples
--------
The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
inputs. The output is also real and even-symmetrical. Half of the IFFT
input is used to generate half of the IFFT output:

>>> from scipy.fft import ifft, idct
>>> import numpy as np
>>> ifft(np.array([ 30.,  -8.,   6.,  -2.,   6.,  -8.])).real
array([  4.,   3.,   5.,  10.,   5.,   3.])
>>> idct(np.array([ 30.,  -8.,   6.,  -2.]), 1)
array([  4.,   3.,   5.,  10.])

r   r"   s           r   r   r   ¢  s   € ôZ ˜œBŸJ™JÓ'Ð)Ð)r   c                 ó8   • [        U [        R                  5      4$ )aˆ  
Return the Discrete Sine Transform of arbitrary type sequence x.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DST (see Notes). Default type is 2.
n : int, optional
    Length of the transform. If ``n < x.shape[axis]``, `x` is
    truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
    default results in ``n = x.shape[axis]``.
axis : int, optional
    Axis along which the dst is computed; the default is over the
    last axis (i.e., ``axis=-1``).
norm : {"backward", "ortho", "forward"}, optional
    Normalization mode (see Notes). Default is "backward".
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.
workers : int, optional
    Maximum number of workers to use for parallel computation. If negative,
    the value wraps around from ``os.cpu_count()``.
    See :func:`~scipy.fft.fft` for more details.
orthogonalize : bool, optional
    Whether to use the orthogonalized DST variant (see Notes).
    Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.

    .. versionadded:: 1.8.0

Returns
-------
dst : ndarray of reals
    The transformed input array.

See Also
--------
idst : Inverse DST

Notes
-----
.. warning:: For ``type in {2, 3}``, ``norm="ortho"`` breaks the direct
             correspondence with the direct Fourier transform. To recover
             it you must specify ``orthogonalize=False``.

For ``norm="ortho"`` both the `dst` and `idst` are scaled by the same
overall factor in both directions. By default, the transform is also
orthogonalized which for types 2 and 3 means the transform definition is
modified to give orthogonality of the DST matrix (see below).

For ``norm="backward"``, there is no scaling on the `dst` and the `idst` is
scaled by ``1/N`` where ``N`` is the "logical" size of the DST.

There are, theoretically, 8 types of the DST for different combinations of
even/odd boundary conditions and boundary off sets [1]_, only the first
4 types are implemented in SciPy.

**Type I**

There are several definitions of the DST-I; we use the following for
``norm="backward"``. DST-I assumes the input is odd around :math:`n=-1` and
:math:`n=N`.

.. math::

    y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)

Note that the DST-I is only supported for input size > 1.
The (unnormalized) DST-I is its own inverse, up to a factor :math:`2(N+1)`.
The orthonormalized DST-I is exactly its own inverse.

``orthogonalize`` has no effect here, as the DST-I matrix is already
orthogonal up to a scale factor of ``2N``.

**Type II**

There are several definitions of the DST-II; we use the following for
``norm="backward"``. DST-II assumes the input is odd around :math:`n=-1/2` and
:math:`n=N-1/2`; the output is odd around :math:`k=-1` and even around :math:`k=N-1`

.. math::

    y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)

If ``orthogonalize=True``, ``y[-1]`` is divided :math:`\sqrt{2}` which, when
combined with ``norm="ortho"``, makes the corresponding matrix of
coefficients orthonormal (``O @ O.T = np.eye(N)``).

**Type III**

There are several definitions of the DST-III, we use the following (for
``norm="backward"``). DST-III assumes the input is odd around :math:`n=-1` and
even around :math:`n=N-1`

.. math::

    y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
    \frac{\pi(2k+1)(n+1)}{2N}\right)

If ``orthogonalize=True``, ``x[-1]`` is multiplied by :math:`\sqrt{2}`
which, when combined with ``norm="ortho"``, makes the corresponding matrix
of coefficients orthonormal (``O @ O.T = np.eye(N)``).

The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
to a factor :math:`2N`. The orthonormalized DST-III is exactly the inverse of the
orthonormalized DST-II.

**Type IV**

There are several definitions of the DST-IV, we use the following (for
``norm="backward"``). DST-IV assumes the input is odd around :math:`n=-0.5` and
even around :math:`n=N-0.5`

.. math::

    y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)

``orthogonalize`` has no effect here, as the DST-IV matrix is already
orthogonal up to a scale factor of ``2N``.

The (unnormalized) DST-IV is its own inverse, up to a factor :math:`2N`. The
orthonormalized DST-IV is exactly its own inverse.

References
----------
.. [1] Wikipedia, "Discrete sine transform",
       https://en.wikipedia.org/wiki/Discrete_sine_transform

r   r"   s           r   r   r   ò  s   € ôH ˜œBŸJ™JÓ'Ð)Ð)r   c                 ó8   • [        U [        R                  5      4$ )a•  
Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

Parameters
----------
x : array_like
    The input array.
type : {1, 2, 3, 4}, optional
    Type of the DST (see Notes). Default type is 2.
n : int, optional
    Length of the transform. If ``n < x.shape[axis]``, `x` is
    truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
    default results in ``n = x.shape[axis]``.
axis : int, optional
    Axis along which the idst is computed; the default is over the
    last axis (i.e., ``axis=-1``).
norm : {"backward", "ortho", "forward"}, optional
    Normalization mode (see Notes). Default is "backward".
overwrite_x : bool, optional
    If True, the contents of `x` can be destroyed; the default is False.
workers : int, optional
    Maximum number of workers to use for parallel computation. If negative,
    the value wraps around from ``os.cpu_count()``.
    See :func:`~scipy.fft.fft` for more details.
orthogonalize : bool, optional
    Whether to use the orthogonalized IDST variant (see Notes).
    Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.

    .. versionadded:: 1.8.0

Returns
-------
idst : ndarray of real
    The transformed input array.

See Also
--------
dst : Forward DST

Notes
-----
.. warning:: For ``type in {2, 3}``, ``norm="ortho"`` breaks the direct
             correspondence with the inverse direct Fourier transform.

For ``norm="ortho"`` both the `dst` and `idst` are scaled by the same
overall factor in both directions. By default, the transform is also
orthogonalized which for types 2 and 3 means the transform definition is
modified to give orthogonality of the DST matrix (see `dst` for the full
definitions).

'The' IDST is the IDST-II, which is the same as the normalized DST-III.

The IDST is equivalent to a normal DST except for the normalization and
type. DST type 1 and 4 are their own inverse and DSTs 2 and 3 are each
other's inverses.

r   r"   s           r   r	   r	   y  s   € ôx ˜œBŸJ™JÓ'Ð)Ð)r   )é   NNNFN)r(   NNNFNN)r(   NéÿÿÿÿNFNN)Ú_basicr   Úscipy._lib.uarrayr   Únumpyr   Ú__all__r
   r   r   r   r   r   r   r	   © r   r   Ú<module>r/      sø   ðÝ Ý *Û â
J€ð Ø>CØð=*Ø(,õ=*ó ð=*ð@ Ø?DØ&*ó=*ó ð=*ð@ Ø>CØ%)ó=*ó ð=*ð@ Ø?DØ&*ó=*ó ð=*ð@ ØJNØóR*ó ðR*ðj Ø<AØ%)óL*ó ðL*ð^ ØJNØóC*ó ðC*ðL Ø<AØ%)ó;*ó ñ;*r   