
    (ph                         S r / SQrSSKJs  Jr  SSKJr  SSKrSSK	r	SS jr
\" \
SSS9SS	 j5       r\" \
SSS9SS
 j5       r\" \
SSS9SS j5       rg)zr
Module of functions that are like ufuncs in acting on arrays and optionally
storing results in an output array.

)fixisneginfisposinf    N)array_function_dispatchc                     X4$ N )xouts     F/var/www/html/venv/lib/python3.13/site-packages/numpy/lib/ufunclike.py_dispatcherr      s	    8O    Fnumpy)verifymodulec                     [         R                  " [         R                  " XS95      n[         R                  " X[         R                  " U S5      S9nUc!  [        U5      [         R                  L a  US   nU$ )a  
Round to nearest integer towards zero.

Round an array of floats element-wise to nearest integer towards zero.
The rounded values are returned as floats.

Parameters
----------
x : array_like
    An array of floats to be rounded
out : ndarray, optional
    A location into which the result is stored. If provided, it must have
    a shape that the input broadcasts to. If not provided or None, a
    freshly-allocated array is returned.

Returns
-------
out : ndarray of floats
    A float array with the same dimensions as the input.
    If second argument is not supplied then a float array is returned
    with the rounded values.

    If a second argument is supplied the result is stored there.
    The return value `out` is then a reference to that array.

See Also
--------
rint, trunc, floor, ceil
around : Round to given number of decimals

Examples
--------
>>> np.fix(3.14)
3.0
>>> np.fix(3)
3.0
>>> np.fix([2.1, 2.9, -2.1, -2.9])
array([ 2.,  2., -2., -2.])

)r   r   )r   wherer	   )nx
asanyarrayceilfloorgreater_equaltypendarray)r
   r   ress      r   r   r      s]    V --+
,C
((1R%5%5a%;
<C {tCyBJJ."gJr   c                    [         R                  " U 5      n [         R                  " U 5      ) n[         R                  " X#U5      $ ! [         a5  n[         R
                  " U 5      R                  n[	        SU S35      UeSnAff = f)a2  
Test element-wise for positive infinity, return result as bool array.

Parameters
----------
x : array_like
    The input array.
out : array_like, optional
    A location into which the result is stored. If provided, it must have a
    shape that the input broadcasts to. If not provided or None, a
    freshly-allocated boolean array is returned.

Returns
-------
out : ndarray
    A boolean array with the same dimensions as the input.
    If second argument is not supplied then a boolean array is returned
    with values True where the corresponding element of the input is
    positive infinity and values False where the element of the input is
    not positive infinity.

    If a second argument is supplied the result is stored there. If the
    type of that array is a numeric type the result is represented as zeros
    and ones, if the type is boolean then as False and True.
    The return value `out` is then a reference to that array.

See Also
--------
isinf, isneginf, isfinite, isnan

Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754).

Errors result if the second argument is also supplied when x is a scalar
input, if first and second arguments have different shapes, or if the
first argument has complex values

Examples
--------
>>> np.isposinf(np.PINF)
True
>>> np.isposinf(np.inf)
True
>>> np.isposinf(np.NINF)
False
>>> np.isposinf([-np.inf, 0., np.inf])
array([False, False,  True])

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isposinf(x, y)
array([0, 0, 1])
>>> y
array([0, 0, 1])

$This operation is not supported for & values because it would be ambiguous.Nr   isinfsignbitlogical_and	TypeErrorr   dtyper
   r   is_infr!   er$   s         r   r   r   G   s    x XXa[F4::a=. ~~fs33  Aa &&>ug F9 9 :?@	AAs   A 
B0B  Bc                    [         R                  " U 5      n [         R                  " U 5      n[         R                  " X#U5      $ ! [         a5  n[         R
                  " U 5      R                  n[	        SU S35      UeSnAff = f)a:  
Test element-wise for negative infinity, return result as bool array.

Parameters
----------
x : array_like
    The input array.
out : array_like, optional
    A location into which the result is stored. If provided, it must have a
    shape that the input broadcasts to. If not provided or None, a
    freshly-allocated boolean array is returned.

Returns
-------
out : ndarray
    A boolean array with the same dimensions as the input.
    If second argument is not supplied then a numpy boolean array is
    returned with values True where the corresponding element of the
    input is negative infinity and values False where the element of
    the input is not negative infinity.

    If a second argument is supplied the result is stored there. If the
    type of that array is a numeric type the result is represented as
    zeros and ones, if the type is boolean then as False and True. The
    return value `out` is then a reference to that array.

See Also
--------
isinf, isposinf, isnan, isfinite

Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754).

Errors result if the second argument is also supplied when x is a scalar
input, if first and second arguments have different shapes, or if the
first argument has complex values.

Examples
--------
>>> np.isneginf(np.NINF)
True
>>> np.isneginf(np.inf)
False
>>> np.isneginf(np.PINF)
False
>>> np.isneginf([-np.inf, 0., np.inf])
array([ True, False, False])

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isneginf(x, y)
array([1, 0, 0])
>>> y
array([1, 0, 0])

r   r   Nr   r%   s         r   r   r      s    x XXa[F4**Q- ~~fs33  Aa &&>ug F9 9 :?@	AAs   A 
B0A??Br   )__doc____all__numpy.core.numericcorenumericr   numpy.core.overridesr   warnings	functoolsr   r   r   r   r	   r   r   <module>r1      s   
 *   8   U7C1 D1h U7CC4 DC4L U7CC4 DC4r   