
    (ph,                     `    S SK rS SKJr  S SKJrJr  SSKJr  \" S SS S9SS	S
.S jj5       r	g)    N)_get_nan)array_namespacexp_copysign   )_axis_nan_policy_factoryc                     U $ N xs    I/var/www/html/venv/lib/python3.13/site-packages/scipy/stats/_variation.py<lambda>r   
   s    a    c                     U 4$ r	   r
   r   s    r   r   r   
   s    r   )	n_outputsresult_to_tupleF)keepdimsc                   [        U 5      nUR                  U 5      n Uc  UR                  U S5      n SnU R                  U   n[	        U 5      nU R
                  S:X  d  X6:  aL  [        U R                  5      nUR                  U5        UR                  XS9n	U	R                  S:X  a  U	S   $ U	$ UR                  XS9n
X6:X  a`  UR                  XSS9nUR                  US:  [        UR                  UR                  5      U
5      U5      n	U	R                  S:X  a  U	S   $ U	$ [        R                   " SSS	9   UR                  XUS9nX-  n	SSS5        W	R                  S:X  a  U	S   $ U	$ ! , (       d  f       N%= f)
aq  
Compute the coefficient of variation.

The coefficient of variation is the standard deviation divided by the
mean.  This function is equivalent to::

    np.std(x, axis=axis, ddof=ddof) / np.mean(x)

The default for ``ddof`` is 0, but many definitions of the coefficient
of variation use the square root of the unbiased sample variance
for the sample standard deviation, which corresponds to ``ddof=1``.

The function does not take the absolute value of the mean of the data,
so the return value is negative if the mean is negative.

Parameters
----------
a : array_like
    Input array.
axis : int or None, optional
    Axis along which to calculate the coefficient of variation.
    Default is 0. If None, compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
    Defines how to handle when input contains ``nan``.
    The following options are available:

      * 'propagate': return ``nan``
      * 'raise': raise an exception
      * 'omit': perform the calculation with ``nan`` values omitted

    The default is 'propagate'.
ddof : int, optional
    Gives the "Delta Degrees Of Freedom" used when computing the
    standard deviation.  The divisor used in the calculation of the
    standard deviation is ``N - ddof``, where ``N`` is the number of
    elements.  `ddof` must be less than ``N``; if it isn't, the result
    will be ``nan`` or ``inf``, depending on ``N`` and the values in
    the array.  By default `ddof` is zero for backwards compatibility,
    but it is recommended to use ``ddof=1`` to ensure that the sample
    standard deviation is computed as the square root of the unbiased
    sample variance.

Returns
-------
variation : ndarray
    The calculated variation along the requested axis.

Notes
-----
There are several edge cases that are handled without generating a
warning:

* If both the mean and the standard deviation are zero, ``nan``
  is returned.
* If the mean is zero and the standard deviation is nonzero, ``inf``
  is returned.
* If the input has length zero (either because the array has zero
  length, or all the input values are ``nan`` and ``nan_policy`` is
  ``'omit'``), ``nan`` is returned.
* If the input contains ``inf``, ``nan`` is returned.

References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
   Probability and Statistics Tables and Formulae. Chapman & Hall: New
   York. 2000.

Examples
--------
>>> import numpy as np
>>> from scipy.stats import variation
>>> variation([1, 2, 3, 4, 5], ddof=1)
0.5270462766947299

Compute the variation along a given dimension of an array that contains
a few ``nan`` values:

>>> x = np.array([[  10.0, np.nan, 11.0, 19.0, 23.0, 29.0, 98.0],
...               [  29.0,   30.0, 32.0, 33.0, 35.0, 56.0, 57.0],
...               [np.nan, np.nan, 12.0, 13.0, 16.0, 16.0, 17.0]])
>>> variation(x, axis=1, ddof=1, nan_policy='omit')
array([1.05109361, 0.31428986, 0.146483  ])

N)r   )
fill_valuer
   )axis)r   
correctionignore)divideinvalid)r   asarrayreshapeshaper   sizelistpopfullndimmeanstdwherer   infnperrstate)ar   
nan_policyddofr   xpnNaNshpresultmean_astd_as               r   	variationr4   	   s]   p 
	B


1A |JJq% 	A
1+Cvv{dh 177m-#[[A-vbz969WWQW"Fyq2%!)[BFF1CV%LcR#[[A-vbz969	Hh	7q5 
8  )6":5v5	 
8	7s   8E,,
E:)r   	propagater   )
numpyr(   scipy._lib._utilr   scipy._lib._array_apir   r   _axis_nan_policyr   r4   r
   r   r   <module>r:      s;     % > 6 1nt6U t6t6r   