
    (ph0                         S SK Jr  S SKJr  S SKrSSKJrJrJ	r	J
r
JrJrJrJr  SS jr\" S5      SS j5       r\" S5      SS	 j5       r\" S5      SS
 j5       rSS jr\" \S9SS j5       rg)    wraps)
_lazywhereN   )_spherical_jn_spherical_yn_spherical_in_spherical_kn_spherical_jn_d_spherical_yn_d_spherical_in_d_spherical_kn_dc                    ^ ^ UU 4S jnU$ )Nc                 J   >^ ^ U U4S jm[        T 5      SU UU4S jj5       nU$ )Nc                 t   > [         R                  " U S-  S:H  TT* 5      nU(       a  U* OUnT" X* U5      U-  $ )N   r   )npwhere)nz
derivativesignfunsign_n_evens       R/var/www/html/venv/lib/python3.13/site-packages/scipy/special/_spherical_bessel.pystandard_reflection>use_reflection.<locals>.decorator.<locals>.standard_reflection   s>    88AEQJk\BD&D5DDq"j)D00    c                 
  >^^ [         R                  " U5      n[         R                  " UR                  [         R                  5      (       a	  T" XT5      $ Tc  TOTm[        UR                  S:  X4UU4S jUU4S jS9S   $ )Nr   c                    > T" XT5      $ N )r   r   r   r   s     r   <lambda>Duse_reflection.<locals>.decorator.<locals>.wrapper.<locals>.<lambda>    s    Sz-Br   c                    > T" XT5      $ r!   r"   )r   r   r   f2s     r   r#   r$   !   s    bz.Br   )fr&   r"   )r   asarray
issubdtypedtypecomplexfloatingr   real)r   r   r   r&   r   reflection_funr   s     `@r   wrapper2use_reflection.<locals>.decorator.<locals>.wrapper   sq    

1A}}QWWb&8&8991,,(6(>$NBaffkA6 B!BDDFH Hr   Fr   )r   r.   r   r-   r   s   ` @r   	decorator!use_reflection.<locals>.decorator   s/    	1 
s		H 		H 
		H r   r"   )r   r-   r1   s   `` r   use_reflectionr3   	   s    
* r   c                     [         R                  " U [         R                  " S5      S9n U(       a  [        X5      $ [	        X5      $ )a  Spherical Bessel function of the first kind or its derivative.

Defined as [1]_,

.. math:: j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n + 1/2}(z),

where :math:`J_n` is the Bessel function of the first kind.

Parameters
----------
n : int, array_like
    Order of the Bessel function (n >= 0).
z : complex or float, array_like
    Argument of the Bessel function.
derivative : bool, optional
    If True, the value of the derivative (rather than the function
    itself) is returned.

Returns
-------
jn : ndarray

Notes
-----
For real arguments greater than the order, the function is computed
using the ascending recurrence [2]_. For small real or complex
arguments, the definitional relation to the cylindrical Bessel function
of the first kind is used.

The derivative is computed using the relations [3]_,

.. math::
    j_n'(z) = j_{n-1}(z) - \frac{n + 1}{z} j_n(z).

    j_0'(z) = -j_1(z)


.. versionadded:: 0.18.0

References
----------
.. [1] https://dlmf.nist.gov/10.47.E3
.. [2] https://dlmf.nist.gov/10.51.E1
.. [3] https://dlmf.nist.gov/10.51.E2
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
    Handbook of Mathematical Functions with Formulas,
    Graphs, and Mathematical Tables. New York: Dover, 1972.

Examples
--------
The spherical Bessel functions of the first kind :math:`j_n` accept
both real and complex second argument. They can return a complex type:

>>> from scipy.special import spherical_jn
>>> spherical_jn(0, 3+5j)
(-9.878987731663194-8.021894345786002j)
>>> type(spherical_jn(0, 3+5j))
<class 'numpy.complex128'>

We can verify the relation for the derivative from the Notes
for :math:`n=3` in the interval :math:`[1, 2]`:

>>> import numpy as np
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_jn(3, x, True),
...             spherical_jn(2, x) - 4/x * spherical_jn(3, x))
True

The first few :math:`j_n` with real argument:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(0.0, 10.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-0.5, 1.5)
>>> ax.set_title(r'Spherical Bessel functions $j_n$')
>>> for n in np.arange(0, 4):
...     ax.plot(x, spherical_jn(n, x), label=rf'$j_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()

longr*   )r   r(   r*   r   r   r   r   r   s      r   spherical_jnr8   &   s7    f 	

1BHHV,-Aq$$Q""r   c                     [         R                  " U [         R                  " S5      S9n U(       a  [        X5      $ [	        X5      $ )aW  Spherical Bessel function of the second kind or its derivative.

Defined as [1]_,

.. math:: y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n + 1/2}(z),

where :math:`Y_n` is the Bessel function of the second kind.

Parameters
----------
n : int, array_like
    Order of the Bessel function (n >= 0).
z : complex or float, array_like
    Argument of the Bessel function.
derivative : bool, optional
    If True, the value of the derivative (rather than the function
    itself) is returned.

Returns
-------
yn : ndarray

Notes
-----
For real arguments, the function is computed using the ascending
recurrence [2]_.  For complex arguments, the definitional relation to
the cylindrical Bessel function of the second kind is used.

The derivative is computed using the relations [3]_,

.. math::
    y_n' = y_{n-1} - \frac{n + 1}{z} y_n.

    y_0' = -y_1


.. versionadded:: 0.18.0

References
----------
.. [1] https://dlmf.nist.gov/10.47.E4
.. [2] https://dlmf.nist.gov/10.51.E1
.. [3] https://dlmf.nist.gov/10.51.E2
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
    Handbook of Mathematical Functions with Formulas,
    Graphs, and Mathematical Tables. New York: Dover, 1972.

Examples
--------
The spherical Bessel functions of the second kind :math:`y_n` accept
both real and complex second argument. They can return a complex type:

>>> from scipy.special import spherical_yn
>>> spherical_yn(0, 3+5j)
(8.022343088587197-9.880052589376795j)
>>> type(spherical_yn(0, 3+5j))
<class 'numpy.complex128'>

We can verify the relation for the derivative from the Notes
for :math:`n=3` in the interval :math:`[1, 2]`:

>>> import numpy as np
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_yn(3, x, True),
...             spherical_yn(2, x) - 4/x * spherical_yn(3, x))
True

The first few :math:`y_n` with real argument:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(0.0, 10.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-2.0, 1.0)
>>> ax.set_title(r'Spherical Bessel functions $y_n$')
>>> for n in np.arange(0, 4):
...     ax.plot(x, spherical_yn(n, x), label=rf'$y_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()

r5   r6   )r   r(   r*   r   r   r7   s      r   spherical_ynr;      s7    d 	

1BHHV,-Aq$$Q""r   c                     [         R                  " U [         R                  " S5      S9n U(       a  [        X5      $ [	        X5      $ )a  Modified spherical Bessel function of the first kind or its derivative.

Defined as [1]_,

.. math:: i_n(z) = \sqrt{\frac{\pi}{2z}} I_{n + 1/2}(z),

where :math:`I_n` is the modified Bessel function of the first kind.

Parameters
----------
n : int, array_like
    Order of the Bessel function (n >= 0).
z : complex or float, array_like
    Argument of the Bessel function.
derivative : bool, optional
    If True, the value of the derivative (rather than the function
    itself) is returned.

Returns
-------
in : ndarray

Notes
-----
The function is computed using its definitional relation to the
modified cylindrical Bessel function of the first kind.

The derivative is computed using the relations [2]_,

.. math::
    i_n' = i_{n-1} - \frac{n + 1}{z} i_n.

    i_1' = i_0


.. versionadded:: 0.18.0

References
----------
.. [1] https://dlmf.nist.gov/10.47.E7
.. [2] https://dlmf.nist.gov/10.51.E5
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
    Handbook of Mathematical Functions with Formulas,
    Graphs, and Mathematical Tables. New York: Dover, 1972.

Examples
--------
The modified spherical Bessel functions of the first kind :math:`i_n`
accept both real and complex second argument.
They can return a complex type:

>>> from scipy.special import spherical_in
>>> spherical_in(0, 3+5j)
(-1.1689867793369182-1.2697305267234222j)
>>> type(spherical_in(0, 3+5j))
<class 'numpy.complex128'>

We can verify the relation for the derivative from the Notes
for :math:`n=3` in the interval :math:`[1, 2]`:

>>> import numpy as np
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_in(3, x, True),
...             spherical_in(2, x) - 4/x * spherical_in(3, x))
True

The first few :math:`i_n` with real argument:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(0.0, 6.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-0.5, 5.0)
>>> ax.set_title(r'Modified spherical Bessel functions $i_n$')
>>> for n in np.arange(0, 4):
...     ax.plot(x, spherical_in(n, x), label=rf'$i_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()

r5   r6   )r   r(   r*   r   r	   r7   s      r   spherical_inr=      7    b 	

1BHHV,-Aq$$Q""r   c                 0    [        XS-   US9R                  $ )Ny                )r   )spherical_knr,   r7   s      r   spherical_kn_reflectionrA   1  s     r6j9>>>r   )r-   c                     [         R                  " U [         R                  " S5      S9n U(       a  [        X5      $ [	        X5      $ )a  Modified spherical Bessel function of the second kind or its derivative.

Defined as [1]_,

.. math:: k_n(z) = \sqrt{\frac{\pi}{2z}} K_{n + 1/2}(z),

where :math:`K_n` is the modified Bessel function of the second kind.

Parameters
----------
n : int, array_like
    Order of the Bessel function (n >= 0).
z : complex or float, array_like
    Argument of the Bessel function.
derivative : bool, optional
    If True, the value of the derivative (rather than the function
    itself) is returned.

Returns
-------
kn : ndarray

Notes
-----
The function is computed using its definitional relation to the
modified cylindrical Bessel function of the second kind.

The derivative is computed using the relations [2]_,

.. math::
    k_n' = -k_{n-1} - \frac{n + 1}{z} k_n.

    k_0' = -k_1


.. versionadded:: 0.18.0

References
----------
.. [1] https://dlmf.nist.gov/10.47.E9
.. [2] https://dlmf.nist.gov/10.51.E5
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
    Handbook of Mathematical Functions with Formulas,
    Graphs, and Mathematical Tables. New York: Dover, 1972.

Examples
--------
The modified spherical Bessel functions of the second kind :math:`k_n`
accept both real and complex second argument.
They can return a complex type:

>>> from scipy.special import spherical_kn
>>> spherical_kn(0, 3+5j)
(0.012985785614001561+0.003354691603137546j)
>>> type(spherical_kn(0, 3+5j))
<class 'numpy.complex128'>

We can verify the relation for the derivative from the Notes
for :math:`n=3` in the interval :math:`[1, 2]`:

>>> import numpy as np
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_kn(3, x, True),
...             - 4/x * spherical_kn(3, x) - spherical_kn(2, x))
True

The first few :math:`k_n` with real argument:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(0.0, 4.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(0.0, 5.0)
>>> ax.set_title(r'Modified spherical Bessel functions $k_n$')
>>> for n in np.arange(0, 4):
...     ax.plot(x, spherical_kn(n, x), label=rf'$k_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()

r5   r6   )r   r(   r*   r   r
   r7   s      r   r@   r@   8  r>   r   )NNr0   )	functoolsr   scipy._lib._utilr   numpyr   _ufuncsr   r   r	   r
   r   r   r   r   r3   r8   r;   r=   rA   r@   r"   r   r   <module>rG      s     ' 8 8 8
: V# V#r U# U#p T# T#n? 67T# 8T#r   