
    (ph                     (    S r SSKrSSKJr  S/rS rg)zVSome more special functions which may be useful for multivariate statistical
analysis.    N)gammalnmultigammalnc                 $   [         R                  " U 5      n [         R                  " U5      (       a  [         R                  " U5      U:w  a  [	        S5      e[         R
                  " U SUS-
  -  :*  5      (       a  [	        SU S SSUS-
  -  S S35      eXS-
  -  S-  [         R                  " [         R                  5      -  nU[         R                  " [        [        SUS-   5       Vs/ s H  o0US	-
  S
-  -
  PM     sn5      SS9-  nU$ s  snf )aj  Returns the log of multivariate gamma, also sometimes called the
generalized gamma.

Parameters
----------
a : ndarray
    The multivariate gamma is computed for each item of `a`.
d : int
    The dimension of the space of integration.

Returns
-------
res : ndarray
    The values of the log multivariate gamma at the given points `a`.

Notes
-----
The formal definition of the multivariate gamma of dimension d for a real
`a` is

.. math::

    \Gamma_d(a) = \int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA

with the condition :math:`a > (d-1)/2`, and :math:`A > 0` being the set of
all the positive definite matrices of dimension `d`.  Note that `a` is a
scalar: the integrand only is multivariate, the argument is not (the
function is defined over a subset of the real set).

This can be proven to be equal to the much friendlier equation

.. math::

    \Gamma_d(a) = \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma(a - (i-1)/2).

References
----------
R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in
probability and mathematical statistics).

Examples
--------
>>> import numpy as np
>>> from scipy.special import multigammaln, gammaln
>>> a = 23.5
>>> d = 10
>>> multigammaln(a, d)
454.1488605074416

Verify that the result agrees with the logarithm of the equation
shown above:

>>> d*(d-1)/4*np.log(np.pi) + gammaln(a - 0.5*np.arange(0, d)).sum()
454.1488605074416
z*d should be a positive integer (dimension)g      ?   zcondition a (fz) > 0.5 * (d-1) (z	) not metg      ?g      ?   r   )axis)npasarrayisscalarfloor
ValueErroranylogpisumloggamrange)adresjs       M/var/www/html/venv/lib/python3.13/site-packages/scipy/special/_spfun_stats.pyr   r   *   s    p 	

1A;;q>>bhhqkQ.EFF	vva3!a%= !!=1->sac{1oYWXX!9trvvbee}
,C266&E!QqSMBMqBz>MBC!LLCJ Cs   +D)__doc__numpyr
   scipy.specialr   r   __all__r        r   <module>r       s#   @  + 
@r   