
    (ph~                    	   S r / SQrSSKrSSKrSSKrSSKrSSKJr  SSK	J
r
  SSKJrJr  SSKJr  SS	KJr  SS
KJr  SSKJr  SSKJr  SSKJr  S rS rS rS rSwS jrSwS jrS rS rS r S r!S r"S r#S r$SwS jr%\RL                  4S jr'\" SSSS 9SxS! j5       r(SyS" jr)SwS# jr*SwS$ jr+SzS& jr,SwS' jr-SwS( jr.SwS) jr/\" S*5      r0\0SS+.S, j5       r1S- r2SwS. jr3S/ r4SwS0 jr5SwS1 jr6SwS2 jr7SwSSS3.S4 jjr8SwS5 jr9SwS6 jr:SwS7 jr;SwS8 jr<\" S95      r=\=SwS: j5       r>SwS; jr?\
" \\RL                  S<9r@\
" \\AS<9rB\\lC        \\lD        \R                  " S%S=9 " S> S?5      5       rF\R                  " S%S=9 " S@ SA5      5       rG\R                  " S%S=9 " SB SC5      5       rH\H" SDSD1\6\R                  \R                  SE9\H" SFSF1\7\R                  \R                  SE9\H" SG1 SHk\5\R                  \R                  SE9\H" SI1 SJk\3\R                  \R                  SE9\H" SKSKSL1\,\F" SK5      \G" SK5      SE9\H" SMSMSN1\-\F" SM5      \G" SM5      SE9\H" SOSO1SP/\:\R                  \R                  SQ9\H" SR1 SSk\*\R                  \R                  SE9\H" ST1 SUkSVSP/\ \.\R                  \R                  SW9\H" SX1 SYkSVSP/\/\R                  \R                  SQ9\H" SZSZS[1\8\F" SZ5      \G" SZ5      SE9\H" S\S\1SP/\1\0" \R                  5      \0" \R                  5      SQ9\H" S]1 S^k\!\4\F" S]5      \G" S]5      S_9\H" S`1 Sak\"\)\R                  \R                  S_9\H" SbSb1SP/\;\R                  \R                  SQ9\H" ScSc1SP/\<\R                  \R                  SQ9\H" Sd1 Sek\$\2\F" Sd5      \G" Sd5      S_9\H" SfSf1SP/\>\=" \R                  5      \=" \R                  5      SQ9\H" SgSg1SP/\?\R                  \R                  SQ9\H" Sh1 Sik\+\R                  \R                  SE9\H" SjSj1SP/\9\R                  \R                  SQ9/ri\i V s0 s H  o R                  U _M     sn rk\i V Vs0 s H  n U R                    H  nX_M     M     snn rm\n" \kR                  5       5      rp\i V s0 s H  n SkU R                  -   U _M     sn rqS{SSl.Sm jjrrS|Sn jrsS}So jrtS~Sp jruSq rvSr rwSs rxSt rySu rzS{SSl.Sv jjr{gs  sn f s  snn f s  sn f )al
  
Distance computations (:mod:`scipy.spatial.distance`)
=====================================================

.. sectionauthor:: Damian Eads

Function reference
------------------

Distance matrix computation from a collection of raw observation vectors
stored in a rectangular array.

.. autosummary::
   :toctree: generated/

   pdist   -- pairwise distances between observation vectors.
   cdist   -- distances between two collections of observation vectors
   squareform -- convert distance matrix to a condensed one and vice versa
   directed_hausdorff -- directed Hausdorff distance between arrays

Predicates for checking the validity of distance matrices, both
condensed and redundant. Also contained in this module are functions
for computing the number of observations in a distance matrix.

.. autosummary::
   :toctree: generated/

   is_valid_dm -- checks for a valid distance matrix
   is_valid_y  -- checks for a valid condensed distance matrix
   num_obs_dm  -- # of observations in a distance matrix
   num_obs_y   -- # of observations in a condensed distance matrix

Distance functions between two numeric vectors ``u`` and ``v``. Computing
distances over a large collection of vectors is inefficient for these
functions. Use ``pdist`` for this purpose.

.. autosummary::
   :toctree: generated/

   braycurtis       -- the Bray-Curtis distance.
   canberra         -- the Canberra distance.
   chebyshev        -- the Chebyshev distance.
   cityblock        -- the Manhattan distance.
   correlation      -- the Correlation distance.
   cosine           -- the Cosine distance.
   euclidean        -- the Euclidean distance.
   jensenshannon    -- the Jensen-Shannon distance.
   mahalanobis      -- the Mahalanobis distance.
   minkowski        -- the Minkowski distance.
   seuclidean       -- the normalized Euclidean distance.
   sqeuclidean      -- the squared Euclidean distance.

Distance functions between two boolean vectors (representing sets) ``u`` and
``v``.  As in the case of numerical vectors, ``pdist`` is more efficient for
computing the distances between all pairs.

.. autosummary::
   :toctree: generated/

   dice             -- the Dice dissimilarity.
   hamming          -- the Hamming distance.
   jaccard          -- the Jaccard distance.
   kulczynski1      -- the Kulczynski 1 distance.
   rogerstanimoto   -- the Rogers-Tanimoto dissimilarity.
   russellrao       -- the Russell-Rao dissimilarity.
   sokalmichener    -- the Sokal-Michener dissimilarity.
   sokalsneath      -- the Sokal-Sneath dissimilarity.
   yule             -- the Yule dissimilarity.

:func:`hamming` also operates over discrete numerical vectors.
)
braycurtiscanberracdist	chebyshev	cityblockcorrelationcosinedicedirected_hausdorff	euclideanhammingis_valid_dm
is_valid_yjaccardjensenshannonkulczynski1mahalanobis	minkowski
num_obs_dm	num_obs_ypdistrogerstanimoto
russellrao
seuclideansokalmichenersokalsneathsqeuclidean
squareformyule    N)Callable)partial)_asarray_validated_transition_to_rng)_deprecated   )_distance_wrap)
_hausdorff   )norm)rel_entr)_distance_pybindc                 @    U R                   b  U R                  5       $ U $ )z4Copy the array if its base points to a parent array.)basecopy)as    I/var/www/html/venv/lib/python3.13/site-packages/scipy/spatial/distance.py_copy_array_if_base_presentr1   ~   s    vvvvxH    c                 |    X R                  SSS9-
  n XR                  SSS9-
  n[        R                  " XU40 UD6  g Nr%   Taxiskeepdims)meanr&   cdist_cosine_double_wrap)XAXBdmkwargss       r0   _correlation_cdist_wrapr>      sA    	gg1tg,	,B	gg1tg,	,B++BBA&Ar2   c                 V    X R                  SSS9-
  n[        R                  " X140 UD6  g r4   )r8   r&   pdist_cosine_double_wrap)Xr<   r=   X2s       r0   _correlation_pdist_wraprC      s*    	
VVTV*	*B++B=f=r2   c                 *    [         R                  " XS9$ )Ndtype)npascontiguousarray)rA   out_types     r0   _convert_to_typerJ      s    22r2   c                 \   U R                   UR                   s=:X  a
  [        :X  aU  O  ORUcO  U ) nU) nX4-  R                  5       nX1-  R                  5       nX-  R                  5       nX-  R                  5       nO[        R                  " [
        U R                   UR                   5      n	U R                  U	5      n UR                  U	5      nSU -
  nSU-
  nUb  X#-  nX -  n X4-  R                  5       nX1-  R                  5       nX-  R                  5       nX-  R                  5       nXVXx4$ N      ?rF   boolsumrG   result_typeintastype)
uvwnot_unot_vnffnftntfnttrF   s
             r0   _nbool_correspond_allr]      s    ww!''!T!ai}!!#yooyooukkmsAGGQWW5HHUOHHUOaa=IEA}!!#yooyooukkmcr2   c                    U R                   UR                   s=:X  a
  [        :X  a3  O  O0Uc-  U ) nU) nX1-  R                  5       nX-  R                  5       nXV4$ [        R                  " [
        U R                   UR                   5      nU R                  U5      n UR                  U5      nSU -
  nSU-
  nUb  X#-  nX -  n X1-  R                  5       nX-  R                  5       nXV4$ rL   rN   )rT   rU   rV   rW   rX   rZ   r[   rF   s           r0   _nbool_correspond_ft_tfr_      s    ww!''!T!aiyooyoo : sAGGQWW5HHUOHHUOaa=IEAyooyoo:r2   c                     UR                   nU R                  U;   a  XwR                  U R                  5         OUS   n[        XS9n [        XS9nUR                  n	U	(       a  U	" X4X#-   U40 UD6nXX4$ Nr   rI   typesrF   indexrJ   	validator)
r:   r;   mAmBnmetric_infor=   rd   typ_validate_kwargss
             r0   _validate_cdist_inputrm      sz    E*,((e*;%BHH%
&qC	"	+B	"	+B #,,!2(BGQA&A3r2   c                     UR                  SS 5      nUc  U$ UR                  S:w  d  UR                  S   U:w  a  [        SUR                  S    SU 35      e[	        U5      US'   U$ )NrV   r%   r   z-Weights must have same size as input vector. z vs. )popndimshape
ValueError_validate_weightsrA   mri   r=   rV   s        r0   _validate_weight_with_sizerv      sr    

3Ayvv{aggajAoHGGAJ<uQC1 2 	2 $A&F3KMr2   c                     UR                  S[        R                  " U4SS95      nUR                  S:w  d  UR                  S   U:w  a  [        SUR                  S   U4-  5      e[        U5      US'   U$ )NrV   doublerE   r%   r   z6Weights must have same size as input vector. %d vs. %d)getrG   onesrp   rq   rr   rs   rt   s        r0   _validate_hamming_kwargsr{      sp    

3H56Avv{aggajAoDPQ
TUV
 	
 $A&F3KMr2   c           	         UR                  SS 5      nUc  X::  a  [        SXUS-   4-  5      e[        U [        5      (       a  [        R
                  " U 5      n [        R                  " [        R                  " U R                  [        R                  SS9R                  5      5      n[        R                  R                  U5      R                  R                  5       n[        U5      US'   U$ )NVIzThe number of observations (%d) is too small; the covariance matrix is singular. For observations with %d dimensions, at least %d observations are required.r%   Fr.   )ro   rr   
isinstancetuplerG   vstack
atleast_2dcovrS   float64Tlinalginvr.   _convert_to_double)rA   ru   ri   r=   r}   CVs         r0   _validate_mahalanobis_kwargsr      s    	D$	B	z6  - 12a!e}	= > >
 a		!A]]266!((2::E("B"D"DEFYY]]2  %%'%b)F4LMr2   c                 b    [        XU40 UD6nSU;  a  SUS'   U$ US   S::  a  [        S5      eU$ )Np       @r   p must be greater than 0)rv   rr   )rA   ru   ri   r=   s       r0   _validate_minkowski_kwargsr      sJ    'a:6:F
&s
 M #;!788Mr2   c                     UR                   nU R                  U;   a  XUR                  U R                  5         OUS   n[        XS9n UR                  nU(       a
  U" XU40 UD6nXU4$ ra   rc   )rA   ru   ri   rj   r=   rd   rk   rl   s           r0   _validate_pdist_inputr     si    E)*E)9%AGG$
%uQxC)A #,,!!4V46>r2   c                    UR                  SS 5      nUc^  [        U [        5      (       a  [        R                  " U 5      n [        R
                  " U R                  [        R                  SS9SSS9nOW[        R                  " USS9n[        UR                  5      S:w  a  [        S	5      eUR                  S   U:w  a  [        S
5      e[        U5      US'   U$ )NVFr~   r   r%   )r6   ddofcorderz*Variance vector V must be one-dimensional.zcVariance vector V must be of the same dimension as the vectors on which the distances are computed.)ro   r   r   rG   r   varrS   r   asarraylenrq   rr   r   )rA   ru   ri   r=   r   s        r0   _validate_seuclidean_kwargsr     s    

3Aya		!AFF188BJJU83!!DJJq$qww<1 3 4 4771:? - . . %Q'F3KMr2   c                 f    [         R                  " XSS9n U R                  S:X  a  U $ [        S5      e)Nr   rF   r   r%   zInput vector should be 1-D.)rG   r   rp   rr   )rT   rF   s     r0   _validate_vectorr   )  s.    


1-Avv{
2
33r2   c                 j    [        XS9n [        R                  " U S:  5      (       a  [        S5      eU $ )NrE   r   z(Input weights should be all non-negative)r   rG   anyrr   )rV   rF   s     r0   rs   rs   1  s.    (A	vva!e}}CDDHr2   seedF)position_numreplace_docc                    [         R                  " U [         R                  SS9n [         R                  " U[         R                  SS9nU R                  S   UR                  S   :w  a  [	        S5      e[
        R                  " XU5      nU$ )al  
Compute the directed Hausdorff distance between two 2-D arrays.

Distances between pairs are calculated using a Euclidean metric.

Parameters
----------
u : (M,N) array_like
    Input array with M points in N dimensions.
v : (O,N) array_like
    Input array with O points in N dimensions.
rng : int or `numpy.random.Generator` or None, optional
    Pseudorandom number generator state. Default is 0 so the
    shuffling of `u` and `v` is reproducible.

    If `rng` is passed by keyword, types other than `numpy.random.Generator` are
    passed to `numpy.random.default_rng` to instantiate a ``Generator``.
    If `rng` is already a ``Generator`` instance, then the provided instance is
    used.

    If this argument is passed by position or `seed` is passed by keyword,
    legacy behavior for the argument `seed` applies:

    - If `seed` is None, a new ``RandomState`` instance is used. The state is
      initialized using data from ``/dev/urandom`` (or the Windows analogue)
      if available or from the system clock otherwise.
    - If `seed` is an int, a new ``RandomState`` instance is used,
      seeded with `seed`.
    - If `seed` is already a ``Generator`` or ``RandomState`` instance, then
      that instance is used.

    .. versionchanged:: 1.15.0
        As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
        transition from use of `numpy.random.RandomState` to
        `numpy.random.Generator`, this keyword was changed from `seed` to `rng`.
        For an interim period, both keywords will continue to work, although only
        one may be specified at a time. After the interim period, function calls
        using the `seed` keyword will emit warnings. The behavior of both `seed`
        and `rng` are outlined above, but only the `rng` keyword should be used in
        new code.

Returns
-------
d : double
    The directed Hausdorff distance between arrays `u` and `v`,

index_1 : int
    index of point contributing to Hausdorff pair in `u`

index_2 : int
    index of point contributing to Hausdorff pair in `v`

Raises
------
ValueError
    An exception is thrown if `u` and `v` do not have
    the same number of columns.

See Also
--------
scipy.spatial.procrustes : Another similarity test for two data sets

Notes
-----
Uses the early break technique and the random sampling approach
described by [1]_. Although worst-case performance is ``O(m * o)``
(as with the brute force algorithm), this is unlikely in practice
as the input data would have to require the algorithm to explore
every single point interaction, and after the algorithm shuffles
the input points at that. The best case performance is O(m), which
is satisfied by selecting an inner loop distance that is less than
cmax and leads to an early break as often as possible. The authors
have formally shown that the average runtime is closer to O(m).

.. versionadded:: 0.19.0

References
----------
.. [1] A. A. Taha and A. Hanbury, "An efficient algorithm for
       calculating the exact Hausdorff distance." IEEE Transactions On
       Pattern Analysis And Machine Intelligence, vol. 37 pp. 2153-63,
       2015.

Examples
--------
Find the directed Hausdorff distance between two 2-D arrays of
coordinates:

>>> from scipy.spatial.distance import directed_hausdorff
>>> import numpy as np
>>> u = np.array([(1.0, 0.0),
...               (0.0, 1.0),
...               (-1.0, 0.0),
...               (0.0, -1.0)])
>>> v = np.array([(2.0, 0.0),
...               (0.0, 2.0),
...               (-2.0, 0.0),
...               (0.0, -4.0)])

>>> directed_hausdorff(u, v)[0]
2.23606797749979
>>> directed_hausdorff(v, u)[0]
3.0

Find the general (symmetric) Hausdorff distance between two 2-D
arrays of coordinates:

>>> max(directed_hausdorff(u, v)[0], directed_hausdorff(v, u)[0])
3.0

Find the indices of the points that generate the Hausdorff distance
(the Hausdorff pair):

>>> directed_hausdorff(v, u)[1:]
(3, 3)

r   r   r%   z/u and v need to have the same number of columns)rG   r   r   rq   rr   r'   r
   )rT   rU   rngresults       r0   r
   r
   8  sr    n 	

1BJJc2A


1BJJc2AwwqzQWWQZ - . 	.**15FMr2   c                 F   [        U 5      n [        U5      nUS::  a  [        S5      eX-
  nUbi  [        U5      nUS:X  a  UnOQUS:X  a  [        R                  " U5      nO4U[        R
                  :X  a  US:g  nO[        R                  " USU-  5      nXT-  n[        XBS9nU$ )a  
Compute the Minkowski distance between two 1-D arrays.

The Minkowski distance between 1-D arrays `u` and `v`,
is defined as

.. math::

   {\|u-v\|}_p = (\sum{|u_i - v_i|^p})^{1/p}.


   \left(\sum{w_i(|(u_i - v_i)|^p)}\right)^{1/p}.

Parameters
----------
u : (N,) array_like
    Input array.
v : (N,) array_like
    Input array.
p : scalar
    The order of the norm of the difference :math:`{\|u-v\|}_p`. Note
    that for :math:`0 < p < 1`, the triangle inequality only holds with
    an additional multiplicative factor, i.e. it is only a quasi-metric.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
minkowski : double
    The Minkowski distance between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 1)
2.0
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 2)
1.4142135623730951
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 3)
1.2599210498948732
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 1)
1.0
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 2)
1.0
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 3)
1.0

r   r   r%   r(   )ord)r   rr   rs   rG   sqrtinfpowerr)   )rT   rU   r   rV   u_vroot_wdists          r0   r   r     s    d 	AAAv344
%C}a 6F!VWWQZF"&&[1fFXXa1%FlDKr2   c                     [        XSUS9$ )a  
Computes the Euclidean distance between two 1-D arrays.

The Euclidean distance between 1-D arrays `u` and `v`, is defined as

.. math::

   {\|u-v\|}_2

   \left(\sum{(w_i |(u_i - v_i)|^2)}\right)^{1/2}

Parameters
----------
u : (N,) array_like
    Input array.
v : (N,) array_like
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
euclidean : double
    The Euclidean distance between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.euclidean([1, 0, 0], [0, 1, 0])
1.4142135623730951
>>> distance.euclidean([1, 1, 0], [0, 1, 0])
1.0

r(   )r   rV   )r   rT   rU   rV   s      r0   r   r     s    H QQ!$$r2   c                    Su  p4[        U S5      (       a4  [        R                  " U R                  [        R                  5      (       d  [        R
                  n[        US5      (       a4  [        R                  " UR                  [        R                  5      (       d  [        R
                  n[        XS9n [        XS9nX-
  nUnUb  [        U5      nX%-  n[        R                  " XV5      $ )a  
Compute the squared Euclidean distance between two 1-D arrays.

The squared Euclidean distance between `u` and `v` is defined as

.. math::

   \sum_i{w_i |u_i - v_i|^2}

Parameters
----------
u : (N,) array_like
    Input array.
v : (N,) array_like
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
sqeuclidean : double
    The squared Euclidean distance between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.sqeuclidean([1, 0, 0], [0, 1, 0])
2.0
>>> distance.sqeuclidean([1, 1, 0], [0, 1, 0])
1.0

)NNrF   rE   )	hasattrrG   
issubdtyperF   inexactr   r   rs   dot)rT   rU   rV   utypevtyper   u_v_ws          r0   r   r   &  s    H LEAwBMM!''2::$F$F

AwBMM!''2::$F$F

(A(A
%CE}a 66#r2   Tc                    [        U 5      n [        U5      n[        R                  " U 5      (       d  [        R                  " U5      (       a  Sn[        R                  " U[
        SS9  Ub  [        U5      nX"R                  5       -  nU(       ad  Ub-  [        R                  " X5      n[        R                  " X5      nO,[        R                  " U 5      n[        R                  " U5      nX-
  n X-
  nUb	  X-  nX-  nOXp[        R                  " X5      n	[        R                  " X5      n
[        R                  " X5      nSU	[        R                  " X-  5      -  -
  n[        R                  " USS5      $ )a  
Compute the correlation distance between two 1-D arrays.

The correlation distance between `u` and `v`, is
defined as

.. math::

    1 - \frac{(u - \bar{u}) \cdot (v - \bar{v})}
              {{\|(u - \bar{u})\|}_2 {\|(v - \bar{v})\|}_2}

where :math:`\bar{u}` is the mean of the elements of `u`
and :math:`x \cdot y` is the dot product of :math:`x` and :math:`y`.

Parameters
----------
u : (N,) array_like of floats
    Input array.

    .. deprecated:: 1.15.0
       Complex `u` is deprecated and will raise an error in SciPy 1.17.0
v : (N,) array_like of floats
    Input array.

    .. deprecated:: 1.15.0
       Complex `v` is deprecated and will raise an error in SciPy 1.17.0
w : (N,) array_like of floats, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0
centered : bool, optional
    If True, `u` and `v` will be centered. Default is True.

Returns
-------
correlation : double
    The correlation distance between 1-D array `u` and `v`.

Examples
--------
Find the correlation between two arrays.

>>> from scipy.spatial.distance import correlation
>>> correlation([1, 0, 1], [1, 1, 0])
1.5

Using a weighting array, the correlation can be calculated as:

>>> correlation([1, 0, 1], [1, 1, 0], w=[0.9, 0.1, 0.1])
1.1

If centering is not needed, the correlation can be calculated as:

>>> correlation([1, 0, 1], [1, 1, 0], centered=False)
0.5
zKComplex `u` and `v` are deprecated and will raise an error in SciPy 1.17.0.r(   
stacklevelrM           r   )r   rG   iscomplexobjwarningswarnDeprecationWarningrs   rP   r   r8   mathr   clip)rT   rU   rV   centeredmessageumuvmuvwuwuvuuvvr   s                r0   r   r   Z  s%   p 	AA	qR__Q// 	 	g1a@}a K=&&,C&&,C''!*C''!*CGG}UUB	B	B	Bdii(((D774c""r2   c                     [        XUSS9$ )a  
Compute the Cosine distance between 1-D arrays.

The Cosine distance between `u` and `v`, is defined as

.. math::

    1 - \frac{u \cdot v}
              {\|u\|_2 \|v\|_2}.

where :math:`u \cdot v` is the dot product of :math:`u` and
:math:`v`.

Parameters
----------
u : (N,) array_like of floats
    Input array.

    .. deprecated:: 1.15.0
       Complex `u` is deprecated and will raise an error in SciPy 1.17.0
v : (N,) array_like of floats
    Input array.

    .. deprecated:: 1.15.0
       Complex `v` is deprecated and will raise an error in SciPy 1.17.0
w : (N,) array_like of floats, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
cosine : double
    The Cosine distance between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.cosine([1, 0, 0], [0, 1, 0])
1.0
>>> distance.cosine([100, 0, 0], [0, 1, 0])
1.0
>>> distance.cosine([1, 1, 0], [0, 1, 0])
0.29289321881345254

F)rV   r   )r   r   s      r0   r   r     s    ` qq511r2   c                 b   [        U 5      n [        U5      nU R                  UR                  :w  a  [        S5      eX:g  nUbX  [        U5      nUR                  U R                  :w  a  [        S5      eX"R	                  5       -  n[
        R                  " X25      $ [
        R                  " U5      $ )a  
Compute the Hamming distance between two 1-D arrays.

The Hamming distance between 1-D arrays `u` and `v`, is simply the
proportion of disagreeing components in `u` and `v`. If `u` and `v` are
boolean vectors, the Hamming distance is

.. math::

   \frac{c_{01} + c_{10}}{n}

where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n`.

Parameters
----------
u : (N,) array_like
    Input array.
v : (N,) array_like
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
hamming : double
    The Hamming distance between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.hamming([1, 0, 0], [0, 1, 0])
0.66666666666666663
>>> distance.hamming([1, 0, 0], [1, 1, 0])
0.33333333333333331
>>> distance.hamming([1, 0, 0], [2, 0, 0])
0.33333333333333331
>>> distance.hamming([1, 0, 0], [3, 0, 0])
0.33333333333333331

z&The 1d arrays must have equal lengths.z/'w' should have the same length as 'u' and 'v'.)r   rq   rr   rs   rP   rG   r   r8   )rT   rU   rV   u_ne_vs       r0   r   r     s    X 	AAww!''ABBVF}a 77aggNOOKvvf  776?r2   c                    [        U 5      n [        U5      n[        R                  " U S:g  US:g  5      n[        R                  " U S:g  US:g  5      nUb  [	        U5      nX#-  nX$-  n[        R
                  " UR                  5       5      n[        R
                  " UR                  5       5      nUS:w  a  XV-  $ [        R
                  " S5      $ )a  
Compute the Jaccard dissimilarity between two boolean vectors.

Given boolean vectors :math:`u \equiv (u_1, \cdots, u_n)`
and :math:`v \equiv (v_1, \cdots, v_n)` that are not both zero,
their *Jaccard dissimilarity* is defined as ([1]_, p. 26)

.. math::

   d_\textrm{jaccard}(u, v) := \frac{c_{10} + c_{01}}
                                    {c_{11} + c_{10} + c_{01}}

where

.. math::

   c_{ij} := \sum_{1 \le k \le n, u_k=i, v_k=j} 1

for :math:`i, j \in \{ 0, 1\}`.  If :math:`u` and :math:`v` are both zero,
their Jaccard dissimilarity is defined to be zero. [2]_

If a (non-negative) weight vector :math:`w \equiv (w_1, \cdots, w_n)`
is supplied, the *weighted Jaccard dissimilarity* is defined similarly
but with :math:`c_{ij}` replaced by

.. math::

   \tilde{c}_{ij} := \sum_{1 \le k \le n, u_k=i, v_k=j} w_k

Parameters
----------
u : (N,) array_like of bools
    Input vector.
v : (N,) array_like of bools
    Input vector.
w : (N,) array_like of floats, optional
    Weights for each pair of :math:`(u_k, v_k)`.  Default is ``None``,
    which gives each pair a weight of ``1.0``.

Returns
-------
jaccard : float
    The Jaccard dissimilarity between vectors `u` and `v`, optionally
    weighted by `w` if supplied.

Notes
-----
The Jaccard dissimilarity satisfies the triangle inequality and is
qualified as a metric. [2]_

The *Jaccard index*, or *Jaccard similarity coefficient*, is equal to
one minus the Jaccard dissimilarity. [3]_

The dissimilarity between general (finite) sets may be computed by
encoding them as boolean vectors and computing the dissimilarity
between the encoded vectors.
For example, subsets :math:`A,B` of :math:`\{ 1, 2, ..., n \}` may be
encoded into boolean vectors :math:`u, v` by setting
:math:`u_k := 1_{k \in A}`, :math:`v_k := 1_{k \in B}`
for :math:`k = 1,2,\cdots,n`.

.. versionchanged:: 1.2.0
   Previously, if all (positively weighted) elements in `u` and `v` are
   zero, the function would return ``nan``.  This was changed to return
   ``0`` instead.

.. versionchanged:: 1.15.0
   Non-0/1 numeric input used to produce an ad hoc result.  Since 1.15.0,
   numeric input is converted to Boolean before computation.

References
----------
.. [1] Kaufman, L. and Rousseeuw, P. J.  (1990).  "Finding Groups in Data:
       An Introduction to Cluster Analysis."  John Wiley & Sons, Inc.
.. [2] Kosub, S.  (2019).  "A note on the triangle inequality for the
       Jaccard distance."  *Pattern Recognition Letters*, 120:36-38.
.. [3] https://en.wikipedia.org/wiki/Jaccard_index

Examples
--------
>>> from scipy.spatial import distance

Non-zero vectors with no matching 1s have dissimilarity of 1.0:

>>> distance.jaccard([1, 0, 0], [0, 1, 0])
1.0

Vectors with some matching 1s have dissimilarity less than 1.0:

>>> distance.jaccard([1, 0, 0, 0], [1, 1, 1, 0])
0.6666666666666666

Identical vectors, including zero vectors, have dissimilarity of 0.0:

>>> distance.jaccard([1, 0, 0], [1, 0, 0])
0.0
>>> distance.jaccard([0, 0, 0], [0, 0, 0])
0.0

The following example computes the dissimilarity from a confusion matrix
directly by setting the weight vector to the frequency of True Positive,
False Negative, False Positive, and True Negative:

>>> distance.jaccard([1, 1, 0, 0], [1, 0, 1, 0], [31, 41, 59, 26])
0.7633587786259542  # (41+59)/(31+41+59)

r   )r   rG   bitwise_xor
bitwise_orrs   r   rP   )rT   rU   rV   unequalnonzeror/   bs          r0   r   r     s    X 	AAnnQ!VQ!V,GmmAFAF+G}a ++


7;;=!A


7;;=!A1fAE/"**Q-/r2   zThe kulczynski1 metric is deprecated since SciPy 1.15.0 and will be removed in SciPy 1.17.0.  Replace usage of 'kulczynski1(u, v)' with '1/jaccard(u, v) - 1'.rV   c                r    [        U 5      n [        U5      nUb  [        U5      n[        XUS9u  p4pVXeU-   -  $ )a6  
Compute the Kulczynski 1 dissimilarity between two boolean 1-D arrays.

.. deprecated:: 1.15.0
   This function is deprecated and will be removed in SciPy 1.17.0.
   Replace usage of ``kulczynski1(u, v)`` with ``1/jaccard(u, v) - 1``.

The Kulczynski 1 dissimilarity between two boolean 1-D arrays `u` and `v`
of length ``n``, is defined as

.. math::

     \frac{c_{11}}
          {c_{01} + c_{10}}

where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k \in {0, 1, ..., n-1}`.

Parameters
----------
u : (N,) array_like, bool
    Input array.
v : (N,) array_like, bool
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
kulczynski1 : float
    The Kulczynski 1 distance between vectors `u` and `v`.

Notes
-----
This measure has a minimum value of 0 and no upper limit.
It is un-defined when there are no non-matches.

.. versionadded:: 1.8.0

References
----------
.. [1] Kulczynski S. et al. Bulletin
       International de l'Academie Polonaise des Sciences
       et des Lettres, Classe des Sciences Mathematiques
       et Naturelles, Serie B (Sciences Naturelles). 1927;
       Supplement II: 57-203.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.kulczynski1([1, 0, 0], [0, 1, 0])
0.0
>>> distance.kulczynski1([True, False, False], [True, True, False])
1.0
>>> distance.kulczynski1([True, False, False], [True])
0.5
>>> distance.kulczynski1([1, 0, 0], [3, 1, 0])
-3.0

r   )r   rs   r]   )rT   rU   rV   _rZ   r[   r\   s          r0   r   r     sF    @ 	AA}a .qq9QS)r2   c                    [        U 5      n [        U5      n[        U[        R                  S9nUR                  S   U R                  S   :w  d   U R                  S   UR                  S   :w  a  [	        S5      e[        XSU-  S9$ )a  
Return the standardized Euclidean distance between two 1-D arrays.

The standardized Euclidean distance between two n-vectors `u` and `v` is

.. math::

   \sqrt{\sum\limits_i \frac{1}{V_i} \left(u_i-v_i \right)^2}

``V`` is the variance vector; ``V[I]`` is the variance computed over all the i-th
components of the points. If not passed, it is automatically computed.

Parameters
----------
u : (N,) array_like
    Input array.
v : (N,) array_like
    Input array.
V : (N,) array_like
    `V` is an 1-D array of component variances. It is usually computed
    among a larger collection of vectors.

Returns
-------
seuclidean : double
    The standardized Euclidean distance between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [0.1, 0.1, 0.1])
4.4721359549995796
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [1, 0.1, 0.1])
3.3166247903553998
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [10, 0.1, 0.1])
3.1780497164141406

rE   r   z7V must be a 1-D array of the same dimension as u and v.r%   r   )r   rG   r   rq   	TypeErrorr   )rT   rU   r   s      r0   r   r     s{    N 	AA"**-AwwqzQWWQZ1771:#; & ' 	'QQqS!!r2   c                     [        U 5      n [        U5      n[        X-
  5      nUb  [        U5      nX#-  nUR                  5       $ )a  
Compute the City Block (Manhattan) distance.

Computes the Manhattan distance between two 1-D arrays `u` and `v`,
which is defined as

.. math::

   \sum_i {\left| u_i - v_i \right|}.

Parameters
----------
u : (N,) array_like
    Input array.
v : (N,) array_like
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
cityblock : double
    The City Block (Manhattan) distance between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.cityblock([1, 0, 0], [0, 1, 0])
2
>>> distance.cityblock([1, 0, 0], [0, 2, 0])
3
>>> distance.cityblock([1, 0, 0], [1, 1, 0])
1

)r   absrs   rP   )rT   rU   rV   l1_diffs       r0   r   r     sF    J 	AA!%jG}a +;;=r2   c                     [        U 5      n [        U5      n[        R                  " U5      nX-
  n[        R                  " [        R                  " X25      U5      n[        R                  " U5      $ )a-  
Compute the Mahalanobis distance between two 1-D arrays.

The Mahalanobis distance between 1-D arrays `u` and `v`, is defined as

.. math::

   \sqrt{ (u-v) V^{-1} (u-v)^T }

where ``V`` is the covariance matrix.  Note that the argument `VI`
is the inverse of ``V``.

Parameters
----------
u : (N,) array_like
    Input array.
v : (N,) array_like
    Input array.
VI : array_like
    The inverse of the covariance matrix.

Returns
-------
mahalanobis : double
    The Mahalanobis distance between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> iv = [[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]]
>>> distance.mahalanobis([1, 0, 0], [0, 1, 0], iv)
1.0
>>> distance.mahalanobis([0, 2, 0], [0, 1, 0], iv)
1.0
>>> distance.mahalanobis([2, 0, 0], [0, 1, 0], iv)
1.7320508075688772

)r   rG   r   r   r   )rT   rU   r}   deltaru   s        r0   r   r   G  sU    N 	AA	r	BEE
rvve %(A771:r2   c                     [        U 5      n [        U5      nUb'  [        U5      n[        US:  [        X-
  5      -  5      $ [        [        X-
  5      5      $ )a  
Compute the Chebyshev distance.

The *Chebyshev distance* between real vectors
:math:`u \equiv (u_1, \cdots, u_n)` and
:math:`v \equiv (v_1, \cdots, v_n)` is defined as [1]_

.. math::

   d_\textrm{chebyshev}(u,v) := \max_{1 \le i \le n} |u_i-v_i|

If a (non-negative) weight vector :math:`w \equiv (w_1, \cdots, w_n)`
is supplied, the *weighted Chebyshev distance* is defined to be the
weighted Minkowski distance of infinite order; that is,

.. math::

   \begin{align}
   d_\textrm{chebyshev}(u,v;w) &:= \lim_{p\rightarrow \infty}
      \left( \sum_{i=1}^n w_i | u_i-v_i |^p \right)^\frac{1}{p} \\
    &= \max_{1 \le i \le n} 1_{w_i > 0} | u_i - v_i |
   \end{align}

Parameters
----------
u : (N,) array_like of floats
    Input vector.
v : (N,) array_like of floats
    Input vector.
w : (N,) array_like of floats, optional
    Weight vector.  Default is ``None``, which gives all pairs
    :math:`(u_i, v_i)` the same weight ``1.0``.

Returns
-------
chebyshev : float
    The Chebyshev distance between vectors `u` and `v`, optionally weighted
    by `w`.

References
----------
.. [1] https://en.wikipedia.org/wiki/Chebyshev_distance

Examples
--------
>>> from scipy.spatial import distance
>>> distance.chebyshev([1, 0, 0], [0, 1, 0])
1
>>> distance.chebyshev([1, 1, 0], [0, 1, 0])
1

r   )r   rs   maxr   r   s      r0   r   r   v  sR    j 	AA}a AESZ'((s15z?r2   c                     [        U 5      n [        U[        R                  S9n[        X-
  5      n[        X-   5      nUb  [	        U5      nX#-  nX$-  nUR                  5       UR                  5       -  $ )a  
Compute the Bray-Curtis distance between two 1-D arrays.

Bray-Curtis distance is defined as

.. math::

   \sum{|u_i-v_i|} / \sum{|u_i+v_i|}

The Bray-Curtis distance is in the range [0, 1] if all coordinates are
positive, and is undefined if the inputs are of length zero.

Parameters
----------
u : (N,) array_like
    Input array.
v : (N,) array_like
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
braycurtis : double
    The Bray-Curtis distance between 1-D arrays `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.braycurtis([1, 0, 0], [0, 1, 0])
1.0
>>> distance.braycurtis([1, 1, 0], [0, 1, 0])
0.33333333333333331

rE   )r   rG   r   r   rs   rP   )rT   rU   rV   r   l1_sums        r0   r   r     si    J 	A"**-A!%jGZF}a +;;=6::<''r2   c                 T   [        U 5      n [        U[        R                  S9nUb  [        U5      n[        R                  " SS9   [        X-
  5      n[        U 5      n[        U5      nX4U-   -  nUb  X&-  n[        R                  " U5      nSSS5        U$ ! , (       d  f       W$ = f)a  
Compute the Canberra distance between two 1-D arrays.

The Canberra distance is defined as

.. math::

     d(u,v) = \sum_i \frac{|u_i-v_i|}
                          {|u_i|+|v_i|}.

Parameters
----------
u : (N,) array_like
    Input array.
v : (N,) array_like
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
canberra : double
    The Canberra distance between vectors `u` and `v`.

Notes
-----
When ``u[i]`` and ``v[i]`` are 0 for given i, then the fraction 0/0 = 0 is
used in the calculation.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.canberra([1, 0, 0], [0, 1, 0])
2.0
>>> distance.canberra([1, 1, 0], [0, 1, 0])
1.0

rE   Nignore)invalid)r   rG   r   rs   errstater   nansum)rT   rU   rV   abs_uvabs_uabs_vds          r0   r   r     s    P 	A"**-A}a 	X	&QUAAem$=AIIaL 
' H 
'	& Hs   AB
B'r5   c                   [         R                  " U 5      n [         R                  " U5      nU [         R                  " XSS9-  n U[         R                  " XSS9-  nX-   S-  n[        X5      n[        X5      n[         R                  " XcUS9n[         R                  " XsUS9n	X-   n
Ub  U
[         R                  " U5      -  n
[         R
                  " U
S-  5      $ )a  
Compute the Jensen-Shannon distance (metric) between
two probability arrays. This is the square root
of the Jensen-Shannon divergence.

The Jensen-Shannon distance between two probability
vectors `p` and `q` is defined as,

.. math::

   \sqrt{\frac{D(p \parallel m) + D(q \parallel m)}{2}}

where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
and :math:`D` is the Kullback-Leibler divergence.

This routine will normalize `p` and `q` if they don't sum to 1.0.

Parameters
----------
p : (N,) array_like
    left probability vector
q : (N,) array_like
    right probability vector
base : double, optional
    the base of the logarithm used to compute the output
    if not given, then the routine uses the default base of
    scipy.stats.entropy.
axis : int, optional
    Axis along which the Jensen-Shannon distances are computed. The default
    is 0.

    .. versionadded:: 1.7.0
keepdims : bool, optional
    If this is set to `True`, the reduced axes are left in the
    result as dimensions with size one. With this option,
    the result will broadcast correctly against the input array.
    Default is False.

    .. versionadded:: 1.7.0

Returns
-------
js : double or ndarray
    The Jensen-Shannon distances between `p` and `q` along the `axis`.

Notes
-----

.. versionadded:: 1.2.0

Examples
--------
>>> from scipy.spatial import distance
>>> import numpy as np
>>> distance.jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0], 2.0)
1.0
>>> distance.jensenshannon([1.0, 0.0], [0.5, 0.5])
0.46450140402245893
>>> distance.jensenshannon([1.0, 0.0, 0.0], [1.0, 0.0, 0.0])
0.0
>>> a = np.array([[1, 2, 3, 4],
...               [5, 6, 7, 8],
...               [9, 10, 11, 12]])
>>> b = np.array([[13, 14, 15, 16],
...               [17, 18, 19, 20],
...               [21, 22, 23, 24]])
>>> distance.jensenshannon(a, b, axis=0)
array([0.1954288, 0.1447697, 0.1138377, 0.0927636])
>>> distance.jensenshannon(a, b, axis=1)
array([0.1402339, 0.0399106, 0.0201815])

Tr5   r   )rG   r   rP   r*   logr   )r   qr-   r6   r7   ru   leftrightleft_sum	right_sumjss              r0   r   r     s    R 	

1A


1A	BFF1$//A	BFF1$//A	
#AA>DQNEvvd9Hu(;I		B
bffTl7728r2   c                     [        U 5      n [        U5      nUb  [        U5      n[        XUS9u  p4pVXT-  nUS:X  a  g[        SU-  Xc-  U-   -  5      $ )a&  
Compute the Yule dissimilarity between two boolean 1-D arrays.

The Yule dissimilarity is defined as

.. math::

     \frac{R}{c_{TT} * c_{FF} + \frac{R}{2}}

where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n` and :math:`R = 2.0 * c_{TF} * c_{FT}`.

Parameters
----------
u : (N,) array_like, bool
    Input array.
v : (N,) array_like, bool
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
yule : double
    The Yule dissimilarity between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.yule([1, 0, 0], [0, 1, 0])
2.0
>>> distance.yule([1, 1, 0], [0, 1, 0])
0.0

r   r   r   r   r   rs   r]   float)rT   rU   rV   rY   rZ   r[   r\   half_Rs           r0   r   r   r  se    L 	AA}a 0;SsYF{S6\SY%7899r2   c                 2   [        U 5      n [        U5      nUb  [        U5      nU R                  UR                  s=:X  a
  [        :X  a  O  OUc  X-  R	                  5       nO}[
        R                  " [        U R                  UR                  5      nU R                  U5      n UR                  U5      nUc  X-  R	                  5       nOX-  U-  R	                  5       n[        XUS9u  pV[        Xe-   [
        R                  " SU-  U-   U-   5      -  5      $ )a  
Compute the Dice dissimilarity between two boolean 1-D arrays.

The Dice dissimilarity between `u` and `v`, is

.. math::

     \frac{c_{TF} + c_{FT}}
          {2c_{TT} + c_{FT} + c_{TF}}

where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n`.

Parameters
----------
u : (N,) array_like, bool
    Input 1-D array.
v : (N,) array_like, bool
    Input 1-D array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
dice : double
    The Dice dissimilarity between 1-D arrays `u` and `v`.

Notes
-----
This function computes the Dice dissimilarity index. To compute the
Dice similarity index, convert one to the other with similarity =
1 - dissimilarity.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.dice([1, 0, 0], [0, 1, 0])
1.0
>>> distance.dice([1, 0, 0], [1, 1, 0])
0.3333333333333333
>>> distance.dice([1, 0, 0], [2, 0, 0])
-0.3333333333333333

r   r   )r   rs   rF   rO   rP   rG   rQ   rR   rS   r_   r   array)rT   rU   rV   r\   rF   rZ   r[   s          r0   r	   r	     s    ^ 	AA}a ww!''!T!aiukkmsAGGQWW5HHUOHHUO95++-C519//#C(3JS#)rxxc	C#(=>>??r2   c                     [        U 5      n [        U5      nUb  [        U5      n[        XUS9u  p4pV[        SXT-   -  5      [        Xc-   SXT-   -  -   5      -  $ )a  
Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.

The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays
`u` and `v`, is defined as

.. math::
   \frac{R}
        {c_{TT} + c_{FF} + R}

where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.

Parameters
----------
u : (N,) array_like, bool
    Input array.
v : (N,) array_like, bool
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
rogerstanimoto : double
    The Rogers-Tanimoto dissimilarity between vectors
    `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.rogerstanimoto([1, 0, 0], [0, 1, 0])
0.8
>>> distance.rogerstanimoto([1, 0, 0], [1, 1, 0])
0.5
>>> distance.rogerstanimoto([1, 0, 0], [2, 0, 0])
-1.0

r   r   r   rT   rU   rV   rY   rZ   r[   r\   s          r0   r   r     sc    T 	AA}a 0;Ss	"#eCI	9J,K&LLLr2   c                    [        U 5      n [        U5      nU R                  UR                  s=:X  a
  [        :X  a-  O  O*Uc'  X-  R                  5       n[	        [        U 5      5      nOZUc'  X-  R                  5       n[	        [        U 5      5      nO0[        U5      nX-  U-  R                  5       nUR                  5       n[	        XC-
  5      U-  $ )a  
Compute the Russell-Rao dissimilarity between two boolean 1-D arrays.

The Russell-Rao dissimilarity between two boolean 1-D arrays, `u` and
`v`, is defined as

.. math::

  \frac{n - c_{TT}}
       {n}

where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n`.

Parameters
----------
u : (N,) array_like, bool
    Input array.
v : (N,) array_like, bool
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
russellrao : double
    The Russell-Rao dissimilarity between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.russellrao([1, 0, 0], [0, 1, 0])
1.0
>>> distance.russellrao([1, 0, 0], [1, 1, 0])
0.6666666666666666
>>> distance.russellrao([1, 0, 0], [2, 0, 0])
0.3333333333333333

)r   rF   rO   rP   r   r   rs   )rT   rU   rV   r\   ri   s        r0   r   r     s    T 	AAww!''!T!aiukkm#a&M	
ukkm#a&Ma uqyooEEG>Ar2   zThe sokalmichener metric is deprecated since SciPy 1.15.0 and will be removed in SciPy 1.17.0.  Replace usage of 'sokalmichener(u, v)' with 'rogerstanimoto(u, v)'.c                     [        U 5      n [        U5      nUb  [        U5      n[        XUS9u  p4pV[        SXT-   -  5      [        Xc-   SXT-   -  -   5      -  $ )ap  
Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays.

.. deprecated:: 1.15.0
   This function is deprecated and will be removed in SciPy 1.17.0.
   Replace usage of ``sokalmichener(u, v)`` with ``rogerstanimoto(u, v)``.

The Sokal-Michener dissimilarity between boolean 1-D arrays `u` and `v`,
is defined as

.. math::

   \frac{R}
        {S + R}

where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n`, :math:`R = 2 * (c_{TF} + c_{FT})` and
:math:`S = c_{FF} + c_{TT}`.

Parameters
----------
u : (N,) array_like, bool
    Input array.
v : (N,) array_like, bool
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
sokalmichener : double
    The Sokal-Michener dissimilarity between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.sokalmichener([1, 0, 0], [0, 1, 0])
0.8
>>> distance.sokalmichener([1, 0, 0], [1, 1, 0])
0.5
>>> distance.sokalmichener([1, 0, 0], [2, 0, 0])
-1.0

r   r   r   r   s          r0   r   r   W  sc    ` 	AA}a .qq9Cc	"#eCIsy8I,I&JJJr2   c                    [        U 5      n [        U5      nU R                  UR                  s=:X  a
  [        :X  a  O  OUc  X-  R                  5       nO6Uc  X-  R                  5       nO [	        U5      nX-  U-  R                  5       n[        XUS9u  pE[        R                  " USXT-   -  -   5      nUR                  5       (       d  [        S5      e[        SXT-   -  5      U-  $ )a  
Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays.

The Sokal-Sneath dissimilarity between `u` and `v`,

.. math::

   \frac{R}
        {c_{TT} + R}

where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.

Parameters
----------
u : (N,) array_like, bool
    Input array.
v : (N,) array_like, bool
    Input array.
w : (N,) array_like, optional
    The weights for each value in `u` and `v`. Default is None,
    which gives each value a weight of 1.0

Returns
-------
sokalsneath : double
    The Sokal-Sneath dissimilarity between vectors `u` and `v`.

Examples
--------
>>> from scipy.spatial import distance
>>> distance.sokalsneath([1, 0, 0], [0, 1, 0])
1.0
>>> distance.sokalsneath([1, 0, 0], [1, 1, 0])
0.66666666666666663
>>> distance.sokalsneath([1, 0, 0], [2, 1, 0])
0.0
>>> distance.sokalsneath([1, 0, 0], [3, 1, 0])
-2.0

r   r   zNSokal-Sneath dissimilarity is not defined for vectors that are entirely false.)r   rF   rO   rP   rs   r_   rG   r   r   rr   r   )rT   rU   rV   r\   rZ   r[   denoms          r0   r   r     s    V 	AAww!''!T!aiukkm	
ukkma uqyoo(3JSHHS3#),,-E99;; < = 	=	"#e++r2   rb   )frozenc                   .    \ rS rSr% \\S'   SS.S jrSrg)CDistMetricWrapperi  metric_nameNoutc                   [         R                  " U5      n[         R                  " U5      nUR                  u  pVUR                  u  pxU R                  n	[        U	   n
[        XXWXj40 UD6u  ppUR                  SS 5      nUb  U
R                  n[        X4XUS.UD6$ [        U[         R                  XW45      n[        [        SU	 SU S35      nU" XU40 UD6  U$ )NrV   metricr  rV   cdist_r   _wrap)rG   rH   rq   r  _METRICSrm   ro   	dist_func_cdist_callable_prepare_out_argumentr   getattrr&   )selfr:   r;   r  r=   rg   ri   rh   r   r  rj   rk   rV   r  r<   cdist_fns                   r0   __call__CDistMetricWrapper.__call__  s    !!"%!!"%&&{+3BA6.46 JJsD!= **F"?%!?7=? ? #3

RH=>VK=#e+LM&v&	r2    __name__
__module____qualname____firstlineno__str__annotations__r  __static_attributes__r  r2   r0   r  r    s    &*  r2   r  c                   .    \ rS rSr% \\S'   SS.S jrSrg)PDistMetricWrapperi  r  Nr  c                   [         R                  " U5      nUR                  u  pEU R                  n[        U   n[        XXW40 UD6u  pnXDS-
  -  S-  n	UR                  SS 5      n
U
b  UR                  n[        U4XU
S.UD6$ [        U[         R                  U	45      n[        [        SU SU S35      nU" X40 UD6  U$ )Nr%   r(   rV   r  pdist_r   r
  )rG   rH   rq   r  r  r   ro   r  _pdist_callabler  r   r  r&   )r  rA   r  r=   ru   ri   r  rj   rk   out_sizerV   r  r<   pdist_fns                 r0   r  PDistMetricWrapper.__call__  s      #ww&&{+.!,$*,QKA%JJsD!= **F": Q:28: : #3

XK@>VK=#e+LM!&!	r2   r  r  r  r2   r0   r  r    s    !%  r2   r  c                       \ rS rSr% \\S'   \\   \S'   \\S'   \\S'   \\S'   Sr\S-  \S'   \	R                  " S	 S
9r\\   \S'   Sr\\S'   Srg)
MetricInfoi  canonical_nameakar  
cdist_func
pdist_funcNrf   c                      S/$ )Nrx   r  r  r2   r0   <lambda>MetricInfo.<lambda>  s    (r2   )default_factoryrd   Trequires_contiguous_outr  )r  r  r  r  r  r  setr    rf   dataclassesfieldrd   listr/  rO   r  r  r2   r0   r&  r&    s\     	SM "&Ix$% #((9KLE49L$(T(r2   r&  r   )r'  r(  r  r)  r*  r   r   >   chchebcheby	chebychevr   r   >   r   cbcblockr   r   cor   cosr	   rO   )r'  r(  rd   r  r)  r*  r   >   eeueuclidr   r   >   hhahammr   matchingrx   )r'  r(  rd   rf   r  r)  r*  r   >   jjajaccr   r   r   r   r   >   mahmahalr   )r'  r(  rf   r  r)  r*  r   >   ru   mipnormr   r   r   r   >   sser   r   r   r   >   sqesqeuclidr   r   test_r  c                   [        U SSSSS9n U R                  n[        U5      S:w  a  [        S5      eUu  pV[	        U5      (       aD  [        USS5      n[        R                  US5      nUb  [        XXh40 UD6u  p	n[        U 4XS	.UD6$ [        U[        5      (       a  UR                  5       n[        R                  US5      nUb  UR                  n
U
" U 4S
U0UD6$ UR                  S5      (       aS  [        R                  US5      nUc  [        SUSS  35      e[        XXh40 UD6u  p	n[        U 4UR                   US	.UD6$ [        SU 35      e[#        S5      e)a#  
Pairwise distances between observations in n-dimensional space.

See Notes for common calling conventions.

Parameters
----------
X : array_like
    An m by n array of m original observations in an
    n-dimensional space.
metric : str or function, optional
    The distance metric to use. The distance function can
    be 'braycurtis', 'canberra', 'chebyshev', 'cityblock',
    'correlation', 'cosine', 'dice', 'euclidean', 'hamming',
    'jaccard', 'jensenshannon', 'kulczynski1',
    'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
    'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath',
    'sqeuclidean', 'yule'.
out : ndarray, optional
    The output array.
    If not None, condensed distance matrix Y is stored in this array.
**kwargs : dict, optional
    Extra arguments to `metric`: refer to each metric documentation for a
    list of all possible arguments.

    Some possible arguments:

    p : scalar
    The p-norm to apply for Minkowski, weighted and unweighted.
    Default: 2.

    w : ndarray
    The weight vector for metrics that support weights (e.g., Minkowski).

    V : ndarray
    The variance vector for standardized Euclidean.
    Default: var(X, axis=0, ddof=1)

    VI : ndarray
    The inverse of the covariance matrix for Mahalanobis.
    Default: inv(cov(X.T)).T

Returns
-------
Y : ndarray
    Returns a condensed distance matrix Y. For each :math:`i` and :math:`j`
    (where :math:`i<j<m`),where m is the number of original observations.
    The metric ``dist(u=X[i], v=X[j])`` is computed and stored in entry ``m
    * i + j - ((i + 2) * (i + 1)) // 2``.

See Also
--------
squareform : converts between condensed distance matrices and
             square distance matrices.

Notes
-----
See ``squareform`` for information on how to calculate the index of
this entry or to convert the condensed distance matrix to a
redundant square matrix.

The following are common calling conventions.

1. ``Y = pdist(X, 'euclidean')``

   Computes the distance between m points using Euclidean distance
   (2-norm) as the distance metric between the points. The points
   are arranged as m n-dimensional row vectors in the matrix X.

2. ``Y = pdist(X, 'minkowski', p=2.)``

   Computes the distances using the Minkowski distance
   :math:`\|u-v\|_p` (:math:`p`-norm) where :math:`p > 0` (note
   that this is only a quasi-metric if :math:`0 < p < 1`).

3. ``Y = pdist(X, 'cityblock')``

   Computes the city block or Manhattan distance between the
   points.

4. ``Y = pdist(X, 'seuclidean', V=None)``

   Computes the standardized Euclidean distance. The standardized
   Euclidean distance between two n-vectors ``u`` and ``v`` is

   .. math::

      \sqrt{\sum {(u_i-v_i)^2 / V[x_i]}}


   V is the variance vector; V[i] is the variance computed over all
   the i'th components of the points.  If not passed, it is
   automatically computed.

5. ``Y = pdist(X, 'sqeuclidean')``

   Computes the squared Euclidean distance :math:`\|u-v\|_2^2` between
   the vectors.

6. ``Y = pdist(X, 'cosine')``

   Computes the cosine distance between vectors u and v,

   .. math::

      1 - \frac{u \cdot v}
               {{\|u\|}_2 {\|v\|}_2}

   where :math:`\|*\|_2` is the 2-norm of its argument ``*``, and
   :math:`u \cdot v` is the dot product of ``u`` and ``v``.

7. ``Y = pdist(X, 'correlation')``

   Computes the correlation distance between vectors u and v. This is

   .. math::

      1 - \frac{(u - \bar{u}) \cdot (v - \bar{v})}
               {{\|(u - \bar{u})\|}_2 {\|(v - \bar{v})\|}_2}

   where :math:`\bar{v}` is the mean of the elements of vector v,
   and :math:`x \cdot y` is the dot product of :math:`x` and :math:`y`.

8. ``Y = pdist(X, 'hamming')``

   Computes the normalized Hamming distance, or the proportion of
   those vector elements between two n-vectors ``u`` and ``v``
   which disagree. To save memory, the matrix ``X`` can be of type
   boolean.

9. ``Y = pdist(X, 'jaccard')``

   Computes the Jaccard distance between the points. Given two
   vectors, ``u`` and ``v``, the Jaccard distance is the
   proportion of those elements ``u[i]`` and ``v[i]`` that
   disagree.

10. ``Y = pdist(X, 'jensenshannon')``

    Computes the Jensen-Shannon distance between two probability arrays.
    Given two probability vectors, :math:`p` and :math:`q`, the
    Jensen-Shannon distance is

    .. math::

       \sqrt{\frac{D(p \parallel m) + D(q \parallel m)}{2}}

    where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
    and :math:`D` is the Kullback-Leibler divergence.

11. ``Y = pdist(X, 'chebyshev')``

    Computes the Chebyshev distance between the points. The
    Chebyshev distance between two n-vectors ``u`` and ``v`` is the
    maximum norm-1 distance between their respective elements. More
    precisely, the distance is given by

    .. math::

       d(u,v) = \max_i {|u_i-v_i|}

12. ``Y = pdist(X, 'canberra')``

    Computes the Canberra distance between the points. The
    Canberra distance between two points ``u`` and ``v`` is

    .. math::

      d(u,v) = \sum_i \frac{|u_i-v_i|}
                           {|u_i|+|v_i|}


13. ``Y = pdist(X, 'braycurtis')``

    Computes the Bray-Curtis distance between the points. The
    Bray-Curtis distance between two points ``u`` and ``v`` is


    .. math::

         d(u,v) = \frac{\sum_i {|u_i-v_i|}}
                        {\sum_i {|u_i+v_i|}}

14. ``Y = pdist(X, 'mahalanobis', VI=None)``

    Computes the Mahalanobis distance between the points. The
    Mahalanobis distance between two points ``u`` and ``v`` is
    :math:`\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
    variable) is the inverse covariance. If ``VI`` is not None,
    ``VI`` will be used as the inverse covariance matrix.

15. ``Y = pdist(X, 'yule')``

    Computes the Yule distance between each pair of boolean
    vectors. (see yule function documentation)

16. ``Y = pdist(X, 'matching')``

    Synonym for 'hamming'.

17. ``Y = pdist(X, 'dice')``

    Computes the Dice distance between each pair of boolean
    vectors. (see dice function documentation)

18. ``Y = pdist(X, 'kulczynski1')``

    Computes the kulczynski1 distance between each pair of
    boolean vectors. (see kulczynski1 function documentation)

    .. deprecated:: 1.15.0
       This metric is deprecated and will be removed in SciPy 1.17.0.
       Replace usage of ``pdist(X, 'kulczynski1')`` with
       ``1 / pdist(X, 'jaccard') - 1``.

19. ``Y = pdist(X, 'rogerstanimoto')``

    Computes the Rogers-Tanimoto distance between each pair of
    boolean vectors. (see rogerstanimoto function documentation)

20. ``Y = pdist(X, 'russellrao')``

    Computes the Russell-Rao distance between each pair of
    boolean vectors. (see russellrao function documentation)

21. ``Y = pdist(X, 'sokalmichener')``

    Computes the Sokal-Michener distance between each pair of
    boolean vectors. (see sokalmichener function documentation)

    .. deprecated:: 1.15.0
       This metric is deprecated and will be removed in SciPy 1.17.0.
       Replace usage of ``pdist(X, 'sokalmichener')`` with
       ``pdist(X, 'rogerstanimoto')``.

22. ``Y = pdist(X, 'sokalsneath')``

    Computes the Sokal-Sneath distance between each pair of
    boolean vectors. (see sokalsneath function documentation)

23. ``Y = pdist(X, 'kulczynski1')``

    Computes the Kulczynski 1 distance between each pair of
    boolean vectors. (see kulczynski1 function documentation)

24. ``Y = pdist(X, f)``

    Computes the distance between all pairs of vectors in X
    using the user supplied 2-arity function f. For example,
    Euclidean distance between the vectors could be computed
    as follows::

      dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum()))

    Note that you should avoid passing a reference to one of
    the distance functions defined in this library. For example,::

      dm = pdist(X, sokalsneath)

    would calculate the pair-wise distances between the vectors in
    X using the Python function sokalsneath. This would result in
    sokalsneath being called :math:`{n \choose 2}` times, which
    is inefficient. Instead, the optimized C version is more
    efficient, and we call it using the following syntax.::

      dm = pdist(X, 'sokalsneath')

Examples
--------
>>> import numpy as np
>>> from scipy.spatial.distance import pdist

``x`` is an array of five points in three-dimensional space.

>>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]])

``pdist(x)`` with no additional arguments computes the 10 pairwise
Euclidean distances:

>>> pdist(x)
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
       6.40312424, 1.        , 5.38516481, 4.58257569, 5.47722558])

The following computes the pairwise Minkowski distances with ``p = 3.5``:

>>> pdist(x, metric='minkowski', p=3.5)
array([2.04898923, 5.1154929 , 7.02700737, 2.43802731, 4.19042714,
       6.03956994, 1.        , 4.45128103, 4.10636143, 5.0619695 ])

The pairwise city block or Manhattan distances:

>>> pdist(x, metric='cityblock')
array([ 3., 11., 10.,  4.,  8.,  9.,  1.,  9.,  7.,  8.])

FT)	sparse_ok
objects_okmask_okcheck_finiter(   z%A 2-dimensional array must be passed.r  UnknownCustomMetricNr  r  r  rN   Unknown "Test" Distance Metric:    Unknown Distance Metric: >2nd argument metric must be a string identifier or a function.)r"   rq   r   rr   callabler  _METRIC_ALIASry   r   r!  r   r  lowerr*  
startswith_TEST_METRICSr  r   )rA   r  r  r=   rJ  ru   ri   mstrrj   rk   r#  s              r0   r   r     s   \	 	1$(-	/A 	
A
1v{@AADAvz+@A#''d3"2a0(.0NAF qCCFCC	FC	 	 ||~#''d3""--HA131&11__W%%'++D$7K" #CDH:!NOO2a0(.0NAF"D%//SD<BD D 8?@@ ) * 	*r2   c                 &   [         R                  " U 5      n U R                  nUR                  5       S:X  a  [	        U5      S:w  a  [        S5      eO.UR                  5       S:X  a  [	        U5      S:w  a  [        S5      e[	        U5      S:X  a  US   S:X  a  [         R                  " SU R                  S	9$ [        [         R                  " [         R                  " US   S-  5      5      5      nXDS-
  -  US   S-  :w  a  [        S
5      e[         R                  " XD4U R                  S	9n[        U 5      n [        R                  " XP5        U$ [	        U5      S:X  a  US   US   :w  a  [        S5      eU(       a  [        U SSS9  US   nUS::  a  [         R                  " / U R                  S	9$ [         R                  " XDS-
  -  S-  U R                  S	9n[        U 5      n [        R                   " X5        U$ [        S[	        U5       S35      e)a  
Convert a vector-form distance vector to a square-form distance
matrix, and vice-versa.

Parameters
----------
X : array_like
    Either a condensed or redundant distance matrix.
force : str, optional
    As with MATLAB(TM), if force is equal to ``'tovector'`` or
    ``'tomatrix'``, the input will be treated as a distance matrix or
    distance vector respectively.
checks : bool, optional
    If set to False, no checks will be made for matrix
    symmetry nor zero diagonals. This is useful if it is known that
    ``X - X.T1`` is small and ``diag(X)`` is close to zero.
    These values are ignored any way so they do not disrupt the
    squareform transformation.

Returns
-------
Y : ndarray
    If a condensed distance matrix is passed, a redundant one is
    returned, or if a redundant one is passed, a condensed distance
    matrix is returned.

Notes
-----
1. ``v = squareform(X)``

   Given a square n-by-n symmetric distance matrix ``X``,
   ``v = squareform(X)`` returns a ``n * (n-1) / 2``
   (i.e. binomial coefficient n choose 2) sized vector `v`
   where :math:`v[{n \choose 2} - {n-i \choose 2} + (j-i-1)]`
   is the distance between distinct points ``i`` and ``j``.
   If ``X`` is non-square or asymmetric, an error is raised.

2. ``X = squareform(v)``

   Given a ``n * (n-1) / 2`` sized vector ``v``
   for some integer ``n >= 1`` encoding distances as described,
   ``X = squareform(v)`` returns a n-by-n distance matrix ``X``.
   The ``X[i, j]`` and ``X[j, i]`` values are set to
   :math:`v[{n \choose 2} - {n-i \choose 2} + (j-i-1)]`
   and all diagonal elements are zero.

In SciPy 0.19.0, ``squareform`` stopped casting all input types to
float64, and started returning arrays of the same dtype as the input.

Examples
--------
>>> import numpy as np
>>> from scipy.spatial.distance import pdist, squareform

``x`` is an array of five points in three-dimensional space.

>>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]])

``pdist(x)`` computes the Euclidean distances between each pair of
points in ``x``.  The distances are returned in a one-dimensional
array with length ``5*(5 - 1)/2 = 10``.

>>> distvec = pdist(x)
>>> distvec
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
       6.40312424, 1.        , 5.38516481, 4.58257569, 5.47722558])

``squareform(distvec)`` returns the 5x5 distance matrix.

>>> m = squareform(distvec)
>>> m
array([[0.        , 2.23606798, 6.40312424, 7.34846923, 2.82842712],
       [2.23606798, 0.        , 4.89897949, 6.40312424, 1.        ],
       [6.40312424, 4.89897949, 0.        , 5.38516481, 4.58257569],
       [7.34846923, 6.40312424, 5.38516481, 0.        , 5.47722558],
       [2.82842712, 1.        , 4.58257569, 5.47722558, 0.        ]])

When given a square distance matrix ``m``, ``squareform(m)`` returns
the one-dimensional condensed distance vector associated with the
matrix.  In this case, we recover ``distvec``.

>>> squareform(m)
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
       6.40312424, 1.        , 5.38516481, 4.58257569, 5.47722558])
tomatrixr%   z8Forcing 'tomatrix' but input X is not a distance vector.tovectorr(   z8Forcing 'tovector' but input X is not a distance matrix.r   )r%   r%   rE   z_Incompatible vector size. It must be a binomial coefficient n choose 2 for some integer n >= 2.z#The matrix argument must be square.TrA   thrownamez;The first argument must be one or two dimensional array. A z#-dimensional array is not permitted)rG   rH   rq   r\  r   rr   zerosrF   rR   ceilr   r1   r&   to_squareform_from_vector_wrapr   r   to_vector_from_squareform_wrap)rA   forcechecksrJ  r   MrU   s          r0   r   r   "	  s   l 	QA	A{{}
"q6Q; 0 1 1  
*	$q6Q; 0 1 1 1v{Q41988F!''22
 !q)*+ A;!A$(" O P P HHaV177+ (* 	55a; 	Q1Q41Q4<BCCC0 aD688Bagg.. HHaq5ka'qww7 (* 	55a; %%(VH,OQ R 	Rr2   c                    [         R                  " U SS9n Sn U R                  n[        U R                  5      S:w  a!  U(       a  [	        SU S35      e[	        S5      eUS:X  a  X R
                  :H  R                  5       (       d!  U(       a  [	        SU S	35      e[	        S
5      eU [        SUS   5      [        SUS   5      4   S:H  R                  5       (       d!  U(       a  [	        SU S35      e[	        S5      e U$ X R
                  -
  U:*  R                  5       (       d*  U(       a  [	        SU SUS S35      e[	        SUS S35      eU [        SUS   5      [        SUS   5      4   U:*  R                  5       (       d2  U(       a  [	        SU SUS S35      e[	        SR                  " U6 5      e U$ ! [         a:  nU(       a  e U(       a  [        R                  " [        U5      SS9  Sn SnAU$ SnAff = f)a  
Return True if input array is a valid distance matrix.

Distance matrices must be 2-dimensional numpy arrays.
They must have a zero-diagonal, and they must be symmetric.

Parameters
----------
D : array_like
    The candidate object to test for validity.
tol : float, optional
    The distance matrix should be symmetric. `tol` is the maximum
    difference between entries ``ij`` and ``ji`` for the distance
    metric to be considered symmetric.
throw : bool, optional
    An exception is thrown if the distance matrix passed is not valid.
name : str, optional
    The name of the variable to checked. This is useful if
    throw is set to True so the offending variable can be identified
    in the exception message when an exception is thrown.
warning : bool, optional
    Instead of throwing an exception, a warning message is
    raised.

Returns
-------
valid : bool
    True if the variable `D` passed is a valid distance matrix.

Notes
-----
Small numerical differences in `D` and `D.T` and non-zeroness of
the diagonal are ignored if they are within the tolerance specified
by `tol`.

Examples
--------
>>> import numpy as np
>>> from scipy.spatial.distance import is_valid_dm

This matrix is a valid distance matrix.

>>> d = np.array([[0.0, 1.1, 1.2, 1.3],
...               [1.1, 0.0, 1.0, 1.4],
...               [1.2, 1.0, 0.0, 1.5],
...               [1.3, 1.4, 1.5, 0.0]])
>>> is_valid_dm(d)
True

In the following examples, the input is not a valid distance matrix.

Not square:

>>> is_valid_dm([[0, 2, 2], [2, 0, 2]])
False

Nonzero diagonal element:

>>> is_valid_dm([[0, 1, 1], [1, 2, 3], [1, 3, 0]])
False

Not symmetric:

>>> is_valid_dm([[0, 1, 3], [2, 0, 1], [3, 1, 0]])
False

r   r   Tr(   zDistance matrix 'z.' must have shape=2 (i.e. be two-dimensional).z<Distance matrix must have shape=2 (i.e. be two-dimensional).r   z' must be symmetric.z"Distance matrix must be symmetric.r   z' diagonal must be zero.z&Distance matrix diagonal must be zero.z%' must be symmetric within tolerance z5.5f.z3Distance matrix must be symmetric within tolerance z2' diagonal must be close to zero within tolerance zMDistance matrix '{}' diagonal must be close to zero within tolerance {:5.5f}.r   FN)rG   r   rq   r   rr   r   allrangeformat	Exceptionr   r   r  )Dtolrd  re  warningvalidrJ  r<  s           r0   r   r   	  sM   H 	

1C AE(GGqww<1 #4TF ;> "> ? ? ! "8 9 9#:H>>##$'8>R%STT$%IJJeAqtneAqtn45:??AA$'8>V%WXX$%MNN	 B4 L) GsN''))$'9$ @CCFt*A&O P P % &225d1&> ? ?eAqtneAqtn45<AACC$'9$ @GGJ4jPQ&S T T % 'JKQ6&RSV&X Y Y D L  MM#a&Q/Ls   C&F< B7F< <
H /G;;H c                 "   [         R                  " U SS9n Sn [        U R                  5      S:w  a!  U(       a  [	        SU S35      e[	        S5      eU R                  S   n[        [         R                  " [         R                  " US	-  5      5      5      nXfS-
  -  S	-  U:w  a!  U(       a  [	        S
U S35      e[	        S5      e U$ ! [         a:  nU(       a  e U(       a  [        R                  " [        U5      S	S9  Sn SnAU$ SnAff = f)a	  
Return True if the input array is a valid condensed distance matrix.

Condensed distance matrices must be 1-dimensional numpy arrays.
Their length must be a binomial coefficient :math:`{n \choose 2}`
for some positive integer n.

Parameters
----------
y : array_like
    The condensed distance matrix.
warning : bool, optional
    Invokes a warning if the variable passed is not a valid
    condensed distance matrix. The warning message explains why
    the distance matrix is not valid.  `name` is used when
    referencing the offending variable.
throw : bool, optional
    Throws an exception if the variable passed is not a valid
    condensed distance matrix.
name : bool, optional
    Used when referencing the offending variable in the
    warning or exception message.

Returns
-------
bool
    True if the input array is a valid condensed distance matrix,
    False otherwise.

Examples
--------
>>> from scipy.spatial.distance import is_valid_y

This vector is a valid condensed distance matrix.  The length is 6,
which corresponds to ``n = 4``, since ``4*(4 - 1)/2`` is 6.

>>> v = [1.0, 1.2, 1.0, 0.5, 1.3, 0.9]
>>> is_valid_y(v)
True

An input vector with length, say, 7, is not a valid condensed distance
matrix.

>>> is_valid_y([1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7])
False

r   r   Tr%   zCondensed distance matrix 'z.' must have shape=1 (i.e. be one-dimensional).zFCondensed distance matrix must have shape=1 (i.e. be one-dimensional).r   r(   z'Length n of condensed distance matrix 'zS' must be a binomial coefficient, i.e.there must be a k such that (k \choose 2)=n)!zxLength n of condensed distance matrix must be a binomial coefficient, i.e. there must be a k such that (k \choose 2)=n)!r   FN)rG   r   r   rq   rr   rR   rg  r   rr  r   r   r  )yru  rd  re  rv  ri   r   r<  s           r0   r   r   -
  s'   ` 	

1C AEqww<1 #>tf EK "K L L ! "> ? ?GGAJA'(QK!O! #J4& QR "R S S ! "G H H " L  MM#a&Q/Ls   B.C
 

D/D		Dc                 ~    [         R                  " U SS9n [        U [         R                  SSS9  U R                  S   $ )a  
Return the number of original observations that correspond to a
square, redundant distance matrix.

Parameters
----------
d : array_like
    The target distance matrix.

Returns
-------
num_obs_dm : int
    The number of observations in the redundant distance matrix.

Examples
--------
Find the number of original observations corresponding
to a square redundant distance matrix d.

>>> from scipy.spatial.distance import num_obs_dm
>>> d = [[0, 100, 200], [100, 0, 150], [200, 150, 0]]
>>> num_obs_dm(d)
3
r   r   Tr   )rt  rd  re  r   )rG   r   r   r   rq   )r   s    r0   r   r   {
  s4    2 	

1C ArvvT4771:r2   c                 $   [         R                  " U SS9n [        U SSS9  U R                  S   nUS:X  a  [	        S5      e[        [         R                  " [         R                  " US-  5      5      5      nX"S	-
  -  S-  U:w  a  [	        S
5      eU$ )a  
Return the number of original observations that correspond to a
condensed distance matrix.

Parameters
----------
Y : array_like
    Condensed distance matrix.

Returns
-------
n : int
    The number of observations in the condensed distance matrix `Y`.

Examples
--------
Find the number of original observations corresponding to a
condensed distance matrix Y.

>>> from scipy.spatial.distance import num_obs_y
>>> Y = [1, 2, 3.5, 7, 10, 4]
>>> num_obs_y(Y)
4
r   r   TYrc  r   zLThe number of observations cannot be determined on an empty distance matrix.r(   r%   z^Invalid condensed distance matrix passed. Must be some k where k=(n choose 2) for some n >= 2.)rG   r   r   rq   rr   rR   rg  r   )r{  kr   s      r0   r   r   
  s    2 	

1C Aq3'	
AAv 5 6 	6BGGBGGAEN#$A	UaA H I 	IHr2   c                    U c  [         R                  " X!S9$ U R                  U:w  a  [        S5      eU R                  R
                  (       d  [        S5      eU R                  [         R                  :w  a  [        S5      eU $ )NrE   z!Output array has incorrect shape.z"Output array must be C-contiguous.z!Output array must be double type.)rG   emptyrq   rr   flagsc_contiguousrF   r   )r  rF   expected_shapes      r0   r  r  
  sh    
{xx44
yyN"<==99!!=>>
yyBJJ<==Jr2   c                (   U R                   S   nXDS-
  -  S-  n[        U[        R                  U45      nSn[	        U R                   S   S-
  5       H;  n[	        US-   U R                   S   5       H  n	U" X   X	   40 UD6Xg'   US-  nM     M=     U$ )Nr   r%   r(   rq   r  rG   r   rp  )
rA   r  r  r=   ri   r"  r<   r|  irC  s
             r0   r!  r!  
  s    	
AU!H	sBJJ	<B	A1771:>"q1uaggaj)A1400BEFA * # Ir2   c                    U R                   S   nUR                   S   n[        U[        R                  XV45      n[	        U5       H'  n[	        U5       H  n	U" X   X   40 UD6XxU	4'   M     M)     U$ )Nr   r  )
r:   r;   r  r  r=   rg   rh   r<   r  rC  s
             r0   r  r  
  sn    	!B	!B	sBJJ	9B2YrAbeRU5f5B!tH   Ir2   c                   [         R                  " U 5      n [         R                  " U5      nU R                  nUR                  n[        U5      S:w  a  [	        S5      e[        U5      S:w  a  [	        S5      eUS   US   :w  a  [	        S5      eUS   nUS   nUS   n	[        U5      (       aE  [        USS5      n
[        R                  U
S	5      nUb  [        XXxX40 UD6u  pp[        X4X#S
.UD6$ [        U[        5      (       a  UR                  5       n
[        R                  U
S	5      nUb  UR                  nU" X4SU0UD6$ U
R                  S5      (       aT  [         R                  U
S	5      nUc  [	        SU
SS	  35      e[        XXxX40 UD6u  pp[        X4UR"                  US
.UD6$ [	        SU
 35      e[%        S5      e)a$  
Compute distance between each pair of the two collections of inputs.

See Notes for common calling conventions.

Parameters
----------
XA : array_like
    An :math:`m_A` by :math:`n` array of :math:`m_A`
    original observations in an :math:`n`-dimensional space.
    Inputs are converted to float type.
XB : array_like
    An :math:`m_B` by :math:`n` array of :math:`m_B`
    original observations in an :math:`n`-dimensional space.
    Inputs are converted to float type.
metric : str or callable, optional
    The distance metric to use. If a string, the distance function can be
    'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation',
    'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon',
    'kulczynski1', 'mahalanobis', 'matching', 'minkowski',
    'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener',
    'sokalsneath', 'sqeuclidean', 'yule'.
**kwargs : dict, optional
    Extra arguments to `metric`: refer to each metric documentation for a
    list of all possible arguments.

    Some possible arguments:

    p : scalar
    The p-norm to apply for Minkowski, weighted and unweighted.
    Default: 2.

    w : array_like
    The weight vector for metrics that support weights (e.g., Minkowski).

    V : array_like
    The variance vector for standardized Euclidean.
    Default: var(vstack([XA, XB]), axis=0, ddof=1)

    VI : array_like
    The inverse of the covariance matrix for Mahalanobis.
    Default: inv(cov(vstack([XA, XB].T))).T

    out : ndarray
    The output array
    If not None, the distance matrix Y is stored in this array.

Returns
-------
Y : ndarray
    A :math:`m_A` by :math:`m_B` distance matrix is returned.
    For each :math:`i` and :math:`j`, the metric
    ``dist(u=XA[i], v=XB[j])`` is computed and stored in the
    :math:`ij` th entry.

Raises
------
ValueError
    An exception is thrown if `XA` and `XB` do not have
    the same number of columns.

Notes
-----
The following are common calling conventions:

1. ``Y = cdist(XA, XB, 'euclidean')``

   Computes the distance between :math:`m` points using
   Euclidean distance (2-norm) as the distance metric between the
   points. The points are arranged as :math:`m`
   :math:`n`-dimensional row vectors in the matrix X.

2. ``Y = cdist(XA, XB, 'minkowski', p=2.)``

   Computes the distances using the Minkowski distance
   :math:`\|u-v\|_p` (:math:`p`-norm) where :math:`p > 0` (note
   that this is only a quasi-metric if :math:`0 < p < 1`).

3. ``Y = cdist(XA, XB, 'cityblock')``

   Computes the city block or Manhattan distance between the
   points.

4. ``Y = cdist(XA, XB, 'seuclidean', V=None)``

   Computes the standardized Euclidean distance. The standardized
   Euclidean distance between two n-vectors ``u`` and ``v`` is

   .. math::

      \sqrt{\sum {(u_i-v_i)^2 / V[x_i]}}.

   V is the variance vector; V[i] is the variance computed over all
   the i'th components of the points. If not passed, it is
   automatically computed.

5. ``Y = cdist(XA, XB, 'sqeuclidean')``

   Computes the squared Euclidean distance :math:`\|u-v\|_2^2` between
   the vectors.

6. ``Y = cdist(XA, XB, 'cosine')``

   Computes the cosine distance between vectors u and v,

   .. math::

      1 - \frac{u \cdot v}
               {{\|u\|}_2 {\|v\|}_2}

   where :math:`\|*\|_2` is the 2-norm of its argument ``*``, and
   :math:`u \cdot v` is the dot product of :math:`u` and :math:`v`.

7. ``Y = cdist(XA, XB, 'correlation')``

   Computes the correlation distance between vectors u and v. This is

   .. math::

      1 - \frac{(u - \bar{u}) \cdot (v - \bar{v})}
               {{\|(u - \bar{u})\|}_2 {\|(v - \bar{v})\|}_2}

   where :math:`\bar{v}` is the mean of the elements of vector v,
   and :math:`x \cdot y` is the dot product of :math:`x` and :math:`y`.


8. ``Y = cdist(XA, XB, 'hamming')``

   Computes the normalized Hamming distance, or the proportion of
   those vector elements between two n-vectors ``u`` and ``v``
   which disagree. To save memory, the matrix ``X`` can be of type
   boolean.

9. ``Y = cdist(XA, XB, 'jaccard')``

   Computes the Jaccard distance between the points. Given two
   vectors, ``u`` and ``v``, the Jaccard distance is the
   proportion of those elements ``u[i]`` and ``v[i]`` that
   disagree where at least one of them is non-zero.

10. ``Y = cdist(XA, XB, 'jensenshannon')``

    Computes the Jensen-Shannon distance between two probability arrays.
    Given two probability vectors, :math:`p` and :math:`q`, the
    Jensen-Shannon distance is

    .. math::

       \sqrt{\frac{D(p \parallel m) + D(q \parallel m)}{2}}

    where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
    and :math:`D` is the Kullback-Leibler divergence.

11. ``Y = cdist(XA, XB, 'chebyshev')``

    Computes the Chebyshev distance between the points. The
    Chebyshev distance between two n-vectors ``u`` and ``v`` is the
    maximum norm-1 distance between their respective elements. More
    precisely, the distance is given by

    .. math::

       d(u,v) = \max_i {|u_i-v_i|}.

12. ``Y = cdist(XA, XB, 'canberra')``

    Computes the Canberra distance between the points. The
    Canberra distance between two points ``u`` and ``v`` is

    .. math::

      d(u,v) = \sum_i \frac{|u_i-v_i|}
                           {|u_i|+|v_i|}.

13. ``Y = cdist(XA, XB, 'braycurtis')``

    Computes the Bray-Curtis distance between the points. The
    Bray-Curtis distance between two points ``u`` and ``v`` is


    .. math::

         d(u,v) = \frac{\sum_i (|u_i-v_i|)}
                       {\sum_i (|u_i+v_i|)}

14. ``Y = cdist(XA, XB, 'mahalanobis', VI=None)``

    Computes the Mahalanobis distance between the points. The
    Mahalanobis distance between two points ``u`` and ``v`` is
    :math:`\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
    variable) is the inverse covariance. If ``VI`` is not None,
    ``VI`` will be used as the inverse covariance matrix.

15. ``Y = cdist(XA, XB, 'yule')``

    Computes the Yule distance between the boolean
    vectors. (see `yule` function documentation)

16. ``Y = cdist(XA, XB, 'matching')``

    Synonym for 'hamming'.

17. ``Y = cdist(XA, XB, 'dice')``

    Computes the Dice distance between the boolean vectors. (see
    `dice` function documentation)

18. ``Y = cdist(XA, XB, 'kulczynski1')``

    Computes the kulczynski distance between the boolean
    vectors. (see `kulczynski1` function documentation)

    .. deprecated:: 1.15.0
       This metric is deprecated and will be removed in SciPy 1.17.0.
       Replace usage of ``cdist(XA, XB, 'kulczynski1')`` with
       ``1 / cdist(XA, XB, 'jaccard') - 1``.

19. ``Y = cdist(XA, XB, 'rogerstanimoto')``

    Computes the Rogers-Tanimoto distance between the boolean
    vectors. (see `rogerstanimoto` function documentation)

20. ``Y = cdist(XA, XB, 'russellrao')``

    Computes the Russell-Rao distance between the boolean
    vectors. (see `russellrao` function documentation)

21. ``Y = cdist(XA, XB, 'sokalmichener')``

    Computes the Sokal-Michener distance between the boolean
    vectors. (see `sokalmichener` function documentation)

    .. deprecated:: 1.15.0
       This metric is deprecated and will be removed in SciPy 1.17.0.
       Replace usage of ``cdist(XA, XB, 'sokalmichener')`` with
       ``cdist(XA, XB, 'rogerstanimoto')``.

22. ``Y = cdist(XA, XB, 'sokalsneath')``

    Computes the Sokal-Sneath distance between the vectors. (see
    `sokalsneath` function documentation)

23. ``Y = cdist(XA, XB, f)``

    Computes the distance between all pairs of vectors in X
    using the user supplied 2-arity function f. For example,
    Euclidean distance between the vectors could be computed
    as follows::

      dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))

    Note that you should avoid passing a reference to one of
    the distance functions defined in this library. For example,::

      dm = cdist(XA, XB, sokalsneath)

    would calculate the pair-wise distances between the vectors in
    X using the Python function `sokalsneath`. This would result in
    sokalsneath being called :math:`{n \choose 2}` times, which
    is inefficient. Instead, the optimized C version is more
    efficient, and we call it using the following syntax::

      dm = cdist(XA, XB, 'sokalsneath')

Examples
--------
Find the Euclidean distances between four 2-D coordinates:

>>> from scipy.spatial import distance
>>> import numpy as np
>>> coords = [(35.0456, -85.2672),
...           (35.1174, -89.9711),
...           (35.9728, -83.9422),
...           (36.1667, -86.7833)]
>>> distance.cdist(coords, coords, 'euclidean')
array([[ 0.    ,  4.7044,  1.6172,  1.8856],
       [ 4.7044,  0.    ,  6.0893,  3.3561],
       [ 1.6172,  6.0893,  0.    ,  2.8477],
       [ 1.8856,  3.3561,  2.8477,  0.    ]])


Find the Manhattan distance from a 3-D point to the corners of the unit
cube:

>>> a = np.array([[0, 0, 0],
...               [0, 0, 1],
...               [0, 1, 0],
...               [0, 1, 1],
...               [1, 0, 0],
...               [1, 0, 1],
...               [1, 1, 0],
...               [1, 1, 1]])
>>> b = np.array([[ 0.1,  0.2,  0.4]])
>>> distance.cdist(a, b, 'cityblock')
array([[ 0.7],
       [ 0.9],
       [ 1.3],
       [ 1.5],
       [ 1.5],
       [ 1.7],
       [ 2.1],
       [ 2.3]])

r(   z!XA must be a 2-dimensional array.z!XB must be a 2-dimensional array.r%   zHXA and XB must have the same number of columns (i.e. feature dimension.)r   r  UnknownNrU  r  rN  rV  rW  rX  rY  )rG   r   rq   r   rr   rZ  r  r[  ry   rm   r  r   r  r\  r)  r]  r^  r  r   )r:   r;   r  r  r=   rJ  sBrg   rh   ri   r_  rj   rk   r  s                 r0   r   r   
  s   n	 
BB	BB
A	B
1v{<==
2w!|<==tr!u} 5 6 	6 
1B	AB	!Avz95#''d3""7#:28#:BCrHfHHH	FC	 	 ||~#''d3""--HB66v66__W%%'++D$7K" #CDH:!NOO"7#:28#:BC"I*44#IAGI I 8?@@ ) * 	*r2   )N)r   )r(   N)NT)r   )noT)r   Frs  F)FFN)|__doc____all__r   r   numpyrG   r1  collections.abcr    	functoolsr!   scipy._lib._utilr"   r#   scipy._lib.deprecationr$    r&   r'   r   r)   specialr*   r+   r1   r>   rC   rJ   r]   r_   rm   rv   r{   r   r   r   r   r   r   rs   r
   r   r   r   r   r   r   r   _deprecated_kulczynski1r   r   r   r   r   r   r   r   r   r	   r   r   _deprecated_sokalmichenerr   r   r   rO   _convert_to_boolpdist_correlation_double_wrapcdist_correlation_double_wrap	dataclassr  r  r&  cdist_braycurtispdist_braycurtiscdist_canberrapdist_canberracdist_chebyshevpdist_chebyshevcdist_cityblockpdist_cityblock
cdist_dice
pdist_dicecdist_euclideanpdist_euclideancdist_hammingpdist_hammingcdist_jaccardpdist_jaccardcdist_kulczynski1pdist_kulczynski1cdist_minkowskipdist_minkowskicdist_rogerstanimotopdist_rogerstanimotocdist_russellraopdist_russellraocdist_sokalmichenerpdist_sokalmichenercdist_sokalsneathpdist_sokalsneathcdist_sqeuclideanpdist_sqeuclidean
cdist_yule
pdist_yule_METRIC_INFOSr'  r  r(  r[  r3  keys_METRICS_NAMESr^  r   r   r   r   r   r   r  r!  r  r   )infoaliass   00r0   <module>r     s  FTB     $  C .     B>
3 0( 
	&&4  "zz  F>| ?|~DN$%N1hU#p02f7tw0t &   E EP-"`+\,^:z-(`4nU1u Up/:d>@B/Md6r (  4K 4Kn9,x -

C +d;  0G ,/F , d#  $4 d#  $0 d#) ) $)0 #N#44#44 !L#22#22 "=#33#33 ".#33#33 $D!%m4%m4 u%h/%h/ Hh#..#.. ".#33#33  6 *#11#11  * #11#11 &d#%o6%o6 $Oh*+;+M+MN*+;+M+MN $+.%m4%m4 "-,#33#33 'h #88#88 #Nh#44#44 #%-%l3%l3 &h,-=-Q-QR,-=-Q-QR $Oh#55#55 $.#55#55 Hh#..#..saF 3@@-$%-@!.,!."&(( "* !., hmmo&ANO4...4OS* S*l
VRrodK\<#L
	b*T b*A A, Ps   2S S!S'