
    (phǂ                     l    S SK rSSKJrJr  / SQrSS jrSS jr " S S5      r " S	 S
\5      r	SS jr
g)    N   )cKDTreecKDTreeNode)minkowski_distance_pminkowski_distancedistance_matrix	RectangleKDTreec                 Z   [         R                  " U 5      n [         R                  " U5      n[         R                  " [         R                  " U R                  UR                  5      S5      nU R	                  U5      n UR	                  U5      nU[         R
                  :X  a+  [         R                  " [         R                  " X-
  5      SS9$ US:X  a+  [         R                  " [         R                  " X-
  5      SS9$ [         R                  " [         R                  " X-
  5      U-  SS9$ )a  Compute the pth power of the L**p distance between two arrays.

For efficiency, this function computes the L**p distance but does
not extract the pth root. If `p` is 1 or infinity, this is equal to
the actual L**p distance.

The last dimensions of `x` and `y` must be the same length.  Any
other dimensions must be compatible for broadcasting.

Parameters
----------
x : (..., K) array_like
    Input array.
y : (..., K) array_like
    Input array.
p : float, 1 <= p <= infinity
    Which Minkowski p-norm to use.

Returns
-------
dist : ndarray
    pth power of the distance between the input arrays.

Examples
--------
>>> from scipy.spatial import minkowski_distance_p
>>> minkowski_distance_p([[0, 0], [0, 0]], [[1, 1], [0, 1]])
array([2., 1.])

float64)axisr   )	npasarraypromote_typesdtypeastypeinfamaxabssum)xypcommon_datatypes       H/var/www/html/venv/lib/python3.13/site-packages/scipy/spatial/_kdtree.pyr   r      s    > 	

1A


1A
 &&r'7'7'I'02O 	
!A	!ABFF{wwrvvac{,,	
avvbffQSk++vvbffQSk1n2..    c                     [         R                  " U 5      n [         R                  " U5      nU[         R                  :X  d  US:X  a  [        XU5      $ [        XU5      SU-  -  $ )a9  Compute the L**p distance between two arrays.

The last dimensions of `x` and `y` must be the same length.  Any
other dimensions must be compatible for broadcasting.

Parameters
----------
x : (..., K) array_like
    Input array.
y : (..., K) array_like
    Input array.
p : float, 1 <= p <= infinity
    Which Minkowski p-norm to use.

Returns
-------
dist : ndarray
    Distance between the input arrays.

Examples
--------
>>> from scipy.spatial import minkowski_distance
>>> minkowski_distance([[0, 0], [0, 0]], [[1, 1], [0, 1]])
array([ 1.41421356,  1.        ])

r   g      ?)r   r   r   r   )r   r   r   s      r   r   r   ?   sR    6 	

1A


1ABFF{a1f#A!,,#A!,r!t44r   c                   X    \ rS rSrSrS rS rS rS rSS jr	SS jr
SS	 jrSS
 jrSrg)r	   b   zDHyperrectangle class.

Represents a Cartesian product of intervals.
c                     [         R                  " X5      R                  [        5      U l        [         R
                  " X5      R                  [        5      U l        U R                  R                  u  U l        g)zConstruct a hyperrectangle.N)	r   maximumr   floatmaxesminimumminsshapem)selfr$   r&   s      r   __init__Rectangle.__init__g   sK    ZZ+2259
JJu*11%8	**""r   c                 \    S[        [        U R                  U R                  5      5       S3$ )Nz<Rectangle >)listzipr&   r$   r)   s    r   __repr__Rectangle.__repr__m   s&    T#dii"<=>a@@r   c                 \    [         R                  " U R                  U R                  -
  5      $ )zTotal volume.)r   prodr$   r&   r0   s    r   volumeRectangle.volumep   s    wwtzz$))+,,r   c                     [         R                  " U R                  5      nX#U'   [        U R                  U5      n[         R                  " U R                  5      nX#U'   [        X0R                  5      nXE4$ )aY  Produce two hyperrectangles by splitting.

In general, if you need to compute maximum and minimum
distances to the children, it can be done more efficiently
by updating the maximum and minimum distances to the parent.

Parameters
----------
d : int
    Axis to split hyperrectangle along.
split : float
    Position along axis `d` to split at.

)r   copyr$   r	   r&   )r)   dsplitmidlessgreaters         r   r:   Rectangle.splitt   s\     ggdjj!AC(ggdii AC,}r   c                     [        S[        R                  " S[        R                  " U R                  U-
  XR                  -
  5      5      U5      $ )z
Return the minimum distance between input and points in the
hyperrectangle.

Parameters
----------
x : array_like
    Input.
p : float, optional
    Input.

r   r   r   r"   r&   r$   r)   r   r   s      r   min_distance_pointRectangle.min_distance_point   s=     "rzz!RZZ		!Qzz\BC
 	
r   c                 x    [        S[        R                  " U R                  U-
  XR                  -
  5      U5      $ )z
Return the maximum distance between input and points in the hyperrectangle.

Parameters
----------
x : array_like
    Input array.
p : float, optional
    Input.

r   r   r   r"   r$   r&   rA   s      r   max_distance_pointRectangle.max_distance_point   s,     "!RZZ

1a		k%JANNr   c                     [        S[        R                  " S[        R                  " U R                  UR                  -
  UR                  U R                  -
  5      5      U5      $ )z
Compute the minimum distance between points in the two hyperrectangles.

Parameters
----------
other : hyperrectangle
    Input.
p : float
    Input.

r   r@   r)   otherr   s      r   min_distance_rectangle Rectangle.min_distance_rectangle   sO     "JJq"**TYYu{{%:%*ZZ

%:< =	
 	
r   c                     [        S[        R                  " U R                  UR                  -
  UR                  U R                  -
  5      U5      $ )z
Compute the maximum distance between points in the two hyperrectangles.

Parameters
----------
other : hyperrectangle
    Input.
p : float, optional
    Input.

r   rE   rI   s      r   max_distance_rectangle Rectangle.max_distance_rectangle   s?     "rzz$**UZZ/TYY1FGL 	Lr   )r(   r$   r&   N)       @)__name__
__module____qualname____firstlineno____doc__r*   r1   r5   r:   rB   rF   rK   rN   __static_attributes__ r   r   r	   r	   b   s2    #A-.
$O
&Lr   r	   c                     ^  \ rS rSrSr " S S5      r " S S\5      r " S S\5      r\U 4S	 j5       r	  SU 4S
 jjr
SSS\R                  S4U 4S jjr  SU 4S jjrSU 4S jjrSU 4S jjrSU 4S jjr SU 4S jjrSrU =r$ )r
      a  kd-tree for quick nearest-neighbor lookup.

This class provides an index into a set of k-dimensional points
which can be used to rapidly look up the nearest neighbors of any
point.

Parameters
----------
data : array_like, shape (n,m)
    The n data points of dimension m to be indexed. This array is
    not copied unless this is necessary to produce a contiguous
    array of doubles, and so modifying this data will result in
    bogus results. The data are also copied if the kd-tree is built
    with copy_data=True.
leafsize : positive int, optional
    The number of points at which the algorithm switches over to
    brute-force.  Default: 10.
compact_nodes : bool, optional
    If True, the kd-tree is built to shrink the hyperrectangles to
    the actual data range. This usually gives a more compact tree that
    is robust against degenerated input data and gives faster queries
    at the expense of longer build time. Default: True.
copy_data : bool, optional
    If True the data is always copied to protect the kd-tree against
    data corruption. Default: False.
balanced_tree : bool, optional
    If True, the median is used to split the hyperrectangles instead of
    the midpoint. This usually gives a more compact tree and
    faster queries at the expense of longer build time. Default: True.
boxsize : array_like or scalar, optional
    Apply a m-d toroidal topology to the KDTree.. The topology is generated
    by :math:`x_i + n_i L_i` where :math:`n_i` are integers and :math:`L_i`
    is the boxsize along i-th dimension. The input data shall be wrapped
    into :math:`[0, L_i)`. A ValueError is raised if any of the data is
    outside of this bound.

Notes
-----
The algorithm used is described in Maneewongvatana and Mount 1999.
The general idea is that the kd-tree is a binary tree, each of whose
nodes represents an axis-aligned hyperrectangle. Each node specifies
an axis and splits the set of points based on whether their coordinate
along that axis is greater than or less than a particular value.

During construction, the axis and splitting point are chosen by the
"sliding midpoint" rule, which ensures that the cells do not all
become long and thin.

The tree can be queried for the r closest neighbors of any given point
(optionally returning only those within some maximum distance of the
point). It can also be queried, with a substantial gain in efficiency,
for the r approximate closest neighbors.

For large dimensions (20 is already large) do not expect this to run
significantly faster than brute force. High-dimensional nearest-neighbor
queries are a substantial open problem in computer science.

Attributes
----------
data : ndarray, shape (n,m)
    The n data points of dimension m to be indexed. This array is
    not copied unless this is necessary to produce a contiguous
    array of doubles. The data are also copied if the kd-tree is built
    with ``copy_data=True``.
leafsize : positive int
    The number of points at which the algorithm switches over to
    brute-force.
m : int
    The dimension of a single data-point.
n : int
    The number of data points.
maxes : ndarray, shape (m,)
    The maximum value in each dimension of the n data points.
mins : ndarray, shape (m,)
    The minimum value in each dimension of the n data points.
size : int
    The number of nodes in the tree.

c                   P    \ rS rSr\SS j5       rSS jrS rS rS r	S r
S	 rS
rg)KDTree.nodei  Nc                     U c  [         R                  U 5      $ U R                  S:X  a  [         R                  U 5      $ [         R	                  U 5      $ )zDCreate either an inner or leaf node, wrapping a cKDTreeNode instancer   )r
   node	split_dimleafnode	innernode)ckdtree_nodes    r   _createKDTree.node._create   sG     #{{<00''2-|44''55r   c                 *    Uc
  [        5       nXl        g N)r   _node)r)   ra   s     r   r*   KDTree.node.__init__*  s    #*}%Jr   c                 0    [        U 5      [        U5      :  $ re   idr)   rJ   s     r   __lt__KDTree.node.__lt__/      d8bi''r   c                 0    [        U 5      [        U5      :  $ re   ri   rk   s     r   __gt__KDTree.node.__gt__2  rn   r   c                 0    [        U 5      [        U5      :*  $ re   ri   rk   s     r   __le__KDTree.node.__le__5      d8r%y((r   c                 0    [        U 5      [        U5      :  $ re   ri   rk   s     r   __ge__KDTree.node.__ge__8  ru   r   c                 0    [        U 5      [        U5      :H  $ re   ri   rk   s     r   __eq__KDTree.node.__eq__;  ru   r   )rf   re   )rQ   rR   rS   rT   staticmethodrb   r*   rl   rp   rs   rw   rz   rV   rW   r   r   r]   r[     s2    		6 
	6	&
	(	(	)	)	)r   r]   c                   4    \ rS rSr\S 5       r\S 5       rSrg)KDTree.leafnodei>  c                 .    U R                   R                  $ re   )rf   indicesr0   s    r   idxKDTree.leafnode.idx?  s    ::%%%r   c                 .    U R                   R                  $ re   rf   childrenr0   s    r   r   KDTree.leafnode.childrenC      ::&&&r   rW   N)rQ   rR   rS   rT   propertyr   r   rV   rW   r   r   r_   r~   >  s(    		& 
	& 
	' 
	'r   r_   c                   X   ^  \ rS rSrU 4S jr\S 5       r\S 5       r\S 5       rSr	U =r
$ )KDTree.innernodeiG  c                 
  > [        U[        5      (       d   e[        TU ]  U5        [        R
                  R                  UR                  5      U l        [        R
                  R                  UR                  5      U l	        g re   )

isinstancer   superr*   r
   r]   rb   lesserr<   r=   )r)   ckdtreenode	__class__s     r   r*   KDTree.innernode.__init__H  s[    k;7777G[)++K,>,>?DI!;;..{/B/BCDLr   c                 .    U R                   R                  $ re   )rf   r^   r0   s    r   r^   KDTree.innernode.split_dimN  s    ::'''r   c                 .    U R                   R                  $ re   )rf   r:   r0   s    r   r:   KDTree.innernode.splitR  s    ::###r   c                 .    U R                   R                  $ re   r   r0   s    r   r   KDTree.innernode.childrenV  r   r   )r=   r<   )rQ   rR   rS   rT   r*   r   r^   r:   r   rV   __classcell__r   s   @r   r`   r   G  sE    	D 
	( 
	( 
	$ 
	$ 
	' 
	'r   r`   c                    > [        U S5      (       d,  [        R                  R                  [        TU ]  5      U l        U R                  $ )N_tree)hasattrr
   r]   rb   r   treer   )r)   r   s    r   r   KDTree.treeZ  s4    tW%%,,UW\:DJzzr   c                    > [         R                  " U5      nUR                  R                  S:X  a  [	        S5      e[
        TU ]  XX4XV5        g )Nc&KDTree does not work with complex data)r   r   r   kind	TypeErrorr   r*   )r)   dataleafsizecompact_nodes	copy_databalanced_treeboxsizer   s          r   r*   KDTree.__init__a  sC    zz$::??c!DEE 	&	1r   r   r      c                   > [         R                  " U5      nUR                  R                  S:X  a  [	        S5      eUc  [        S5      e[        T	U ]  XX4XV5      u  px[        U[        5      (       a  [         R                  " U5      nXx4$ )a"  Query the kd-tree for nearest neighbors.

Parameters
----------
x : array_like, last dimension self.m
    An array of points to query.
k : int or Sequence[int], optional
    Either the number of nearest neighbors to return, or a list of the
    k-th nearest neighbors to return, starting from 1.
eps : nonnegative float, optional
    Return approximate nearest neighbors; the kth returned value
    is guaranteed to be no further than (1+eps) times the
    distance to the real kth nearest neighbor.
p : float, 1<=p<=infinity, optional
    Which Minkowski p-norm to use.
    1 is the sum-of-absolute-values distance ("Manhattan" distance).
    2 is the usual Euclidean distance.
    infinity is the maximum-coordinate-difference distance.
    A large, finite p may cause a ValueError if overflow can occur.
distance_upper_bound : nonnegative float, optional
    Return only neighbors within this distance. This is used to prune
    tree searches, so if you are doing a series of nearest-neighbor
    queries, it may help to supply the distance to the nearest neighbor
    of the most recent point.
workers : int, optional
    Number of workers to use for parallel processing. If -1 is given
    all CPU threads are used. Default: 1.

    .. versionadded:: 1.6.0

Returns
-------
d : float or array of floats
    The distances to the nearest neighbors.
    If ``x`` has shape ``tuple+(self.m,)``, then ``d`` has shape
    ``tuple+(k,)``.
    When k == 1, the last dimension of the output is squeezed.
    Missing neighbors are indicated with infinite distances.
    Hits are sorted by distance (nearest first).

    .. versionchanged:: 1.9.0
       Previously if ``k=None``, then `d` was an object array of
       shape ``tuple``, containing lists of distances. This behavior
       has been removed, use `query_ball_point` instead.

i : integer or array of integers
    The index of each neighbor in ``self.data``.
    ``i`` is the same shape as d.
    Missing neighbors are indicated with ``self.n``.

Examples
--------

>>> import numpy as np
>>> from scipy.spatial import KDTree
>>> x, y = np.mgrid[0:5, 2:8]
>>> tree = KDTree(np.c_[x.ravel(), y.ravel()])

To query the nearest neighbours and return squeezed result, use

>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=1)
>>> print(dd, ii, sep='\n')
[2.         0.2236068]
[ 0 13]

To query the nearest neighbours and return unsqueezed result, use

>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[1])
>>> print(dd, ii, sep='\n')
[[2.        ]
 [0.2236068]]
[[ 0]
 [13]]

To query the second nearest neighbours and return unsqueezed result,
use

>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[2])
>>> print(dd, ii, sep='\n')
[[2.23606798]
 [0.80622577]]
[[ 6]
 [19]]

To query the first and second nearest neighbours, use

>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=2)
>>> print(dd, ii, sep='\n')
[[2.         2.23606798]
 [0.2236068  0.80622577]]
[[ 0  6]
 [13 19]]

or, be more specific

>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[1, 2])
>>> print(dd, ii, sep='\n')
[[2.         2.23606798]
 [0.2236068  0.80622577]]
[[ 0  6]
 [13 19]]

r   r   z.k must be an integer or a sequence of integers)r   r   r   r   r   
ValueErrorr   queryr   intintp)
r)   r   kepsr   distance_upper_boundworkersr9   ir   s
            r   r   KDTree.queryk  sv    R JJqM77<<3DEE9MNNw}Q3+?Ia
Atr   c           	         > [         R                  " U5      nUR                  R                  S:X  a  [	        S5      e[
        TU ]  XX4XVU5      $ )a  Find all points within distance r of point(s) x.

Parameters
----------
x : array_like, shape tuple + (self.m,)
    The point or points to search for neighbors of.
r : array_like, float
    The radius of points to return, must broadcast to the length of x.
p : float, optional
    Which Minkowski p-norm to use.  Should be in the range [1, inf].
    A finite large p may cause a ValueError if overflow can occur.
eps : nonnegative float, optional
    Approximate search. Branches of the tree are not explored if their
    nearest points are further than ``r / (1 + eps)``, and branches are
    added in bulk if their furthest points are nearer than
    ``r * (1 + eps)``.
workers : int, optional
    Number of jobs to schedule for parallel processing. If -1 is given
    all processors are used. Default: 1.

    .. versionadded:: 1.6.0
return_sorted : bool, optional
    Sorts returned indices if True and does not sort them if False. If
    None, does not sort single point queries, but does sort
    multi-point queries which was the behavior before this option
    was added.

    .. versionadded:: 1.6.0
return_length : bool, optional
    Return the number of points inside the radius instead of a list
    of the indices.

    .. versionadded:: 1.6.0

Returns
-------
results : list or array of lists
    If `x` is a single point, returns a list of the indices of the
    neighbors of `x`. If `x` is an array of points, returns an object
    array of shape tuple containing lists of neighbors.

Notes
-----
If you have many points whose neighbors you want to find, you may save
substantial amounts of time by putting them in a KDTree and using
query_ball_tree.

Examples
--------
>>> import numpy as np
>>> from scipy import spatial
>>> x, y = np.mgrid[0:5, 0:5]
>>> points = np.c_[x.ravel(), y.ravel()]
>>> tree = spatial.KDTree(points)
>>> sorted(tree.query_ball_point([2, 0], 1))
[5, 10, 11, 15]

Query multiple points and plot the results:

>>> import matplotlib.pyplot as plt
>>> points = np.asarray(points)
>>> plt.plot(points[:,0], points[:,1], '.')
>>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1):
...     nearby_points = points[results]
...     plt.plot(nearby_points[:,0], nearby_points[:,1], 'o')
>>> plt.margins(0.1, 0.1)
>>> plt.show()

r   r   )r   r   r   r   r   r   query_ball_point)	r)   r   rr   r   r   return_sortedreturn_lengthr   s	           r   r   KDTree.query_ball_point  sL    N JJqM77<<3DEEw'!'-A 	Ar   c                 $   > [         TU ]  XX45      $ )a  
Find all pairs of points between `self` and `other` whose distance is
at most r.

Parameters
----------
other : KDTree instance
    The tree containing points to search against.
r : float
    The maximum distance, has to be positive.
p : float, optional
    Which Minkowski norm to use.  `p` has to meet the condition
    ``1 <= p <= infinity``.
eps : float, optional
    Approximate search.  Branches of the tree are not explored
    if their nearest points are further than ``r/(1+eps)``, and
    branches are added in bulk if their furthest points are nearer
    than ``r * (1+eps)``.  `eps` has to be non-negative.

Returns
-------
results : list of lists
    For each element ``self.data[i]`` of this tree, ``results[i]`` is a
    list of the indices of its neighbors in ``other.data``.

Examples
--------
You can search all pairs of points between two kd-trees within a distance:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from scipy.spatial import KDTree
>>> rng = np.random.default_rng()
>>> points1 = rng.random((15, 2))
>>> points2 = rng.random((15, 2))
>>> plt.figure(figsize=(6, 6))
>>> plt.plot(points1[:, 0], points1[:, 1], "xk", markersize=14)
>>> plt.plot(points2[:, 0], points2[:, 1], "og", markersize=14)
>>> kd_tree1 = KDTree(points1)
>>> kd_tree2 = KDTree(points2)
>>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2)
>>> for i in range(len(indexes)):
...     for j in indexes[i]:
...         plt.plot([points1[i, 0], points2[j, 0]],
...             [points1[i, 1], points2[j, 1]], "-r")
>>> plt.show()

)r   query_ball_tree)r)   rJ   r   r   r   r   s        r   r   KDTree.query_ball_tree-  s    b w&u88r   c                 $   > [         TU ]  XX45      $ )a  Find all pairs of points in `self` whose distance is at most r.

Parameters
----------
r : positive float
    The maximum distance.
p : float, optional
    Which Minkowski norm to use.  `p` has to meet the condition
    ``1 <= p <= infinity``.
eps : float, optional
    Approximate search.  Branches of the tree are not explored
    if their nearest points are further than ``r/(1+eps)``, and
    branches are added in bulk if their furthest points are nearer
    than ``r * (1+eps)``.  `eps` has to be non-negative.
output_type : string, optional
    Choose the output container, 'set' or 'ndarray'. Default: 'set'

    .. versionadded:: 1.6.0

Returns
-------
results : set or ndarray
    Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding
    positions are close. If output_type is 'ndarray', an ndarry is
    returned instead of a set.

Examples
--------
You can search all pairs of points in a kd-tree within a distance:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from scipy.spatial import KDTree
>>> rng = np.random.default_rng()
>>> points = rng.random((20, 2))
>>> plt.figure(figsize=(6, 6))
>>> plt.plot(points[:, 0], points[:, 1], "xk", markersize=14)
>>> kd_tree = KDTree(points)
>>> pairs = kd_tree.query_pairs(r=0.2)
>>> for (i, j) in pairs:
...     plt.plot([points[i, 0], points[j, 0]],
...             [points[i, 1], points[j, 1]], "-r")
>>> plt.show()

)r   query_pairs)r)   r   r   r   output_typer   s        r   r   KDTree.query_pairs`  s    \ w"1::r   c                 &   > [         TU ]  XX4U5      $ )a  Count how many nearby pairs can be formed.

Count the number of pairs ``(x1,x2)`` can be formed, with ``x1`` drawn
from ``self`` and ``x2`` drawn from ``other``, and where
``distance(x1, x2, p) <= r``.

Data points on ``self`` and ``other`` are optionally weighted by the
``weights`` argument. (See below)

This is adapted from the "two-point correlation" algorithm described by
Gray and Moore [1]_.  See notes for further discussion.

Parameters
----------
other : KDTree
    The other tree to draw points from, can be the same tree as self.
r : float or one-dimensional array of floats
    The radius to produce a count for. Multiple radii are searched with
    a single tree traversal.
    If the count is non-cumulative(``cumulative=False``), ``r`` defines
    the edges of the bins, and must be non-decreasing.
p : float, optional
    1<=p<=infinity.
    Which Minkowski p-norm to use.
    Default 2.0.
    A finite large p may cause a ValueError if overflow can occur.
weights : tuple, array_like, or None, optional
    If None, the pair-counting is unweighted.
    If given as a tuple, weights[0] is the weights of points in
    ``self``, and weights[1] is the weights of points in ``other``;
    either can be None to indicate the points are unweighted.
    If given as an array_like, weights is the weights of points in
    ``self`` and ``other``. For this to make sense, ``self`` and
    ``other`` must be the same tree. If ``self`` and ``other`` are two
    different trees, a ``ValueError`` is raised.
    Default: None

    .. versionadded:: 1.6.0
cumulative : bool, optional
    Whether the returned counts are cumulative. When cumulative is set
    to ``False`` the algorithm is optimized to work with a large number
    of bins (>10) specified by ``r``. When ``cumulative`` is set to
    True, the algorithm is optimized to work with a small number of
    ``r``. Default: True

    .. versionadded:: 1.6.0

Returns
-------
result : scalar or 1-D array
    The number of pairs. For unweighted counts, the result is integer.
    For weighted counts, the result is float.
    If cumulative is False, ``result[i]`` contains the counts with
    ``(-inf if i == 0 else r[i-1]) < R <= r[i]``

Notes
-----
Pair-counting is the basic operation used to calculate the two point
correlation functions from a data set composed of position of objects.

Two point correlation function measures the clustering of objects and
is widely used in cosmology to quantify the large scale structure
in our Universe, but it may be useful for data analysis in other fields
where self-similar assembly of objects also occur.

The Landy-Szalay estimator for the two point correlation function of
``D`` measures the clustering signal in ``D``. [2]_

For example, given the position of two sets of objects,

- objects ``D`` (data) contains the clustering signal, and

- objects ``R`` (random) that contains no signal,

.. math::

     \xi(r) = \frac{<D, D> - 2 f <D, R> + f^2<R, R>}{f^2<R, R>},

where the brackets represents counting pairs between two data sets
in a finite bin around ``r`` (distance), corresponding to setting
`cumulative=False`, and ``f = float(len(D)) / float(len(R))`` is the
ratio between number of objects from data and random.

The algorithm implemented here is loosely based on the dual-tree
algorithm described in [1]_. We switch between two different
pair-cumulation scheme depending on the setting of ``cumulative``.
The computing time of the method we use when for
``cumulative == False`` does not scale with the total number of bins.
The algorithm for ``cumulative == True`` scales linearly with the
number of bins, though it is slightly faster when only
1 or 2 bins are used. [5]_.

As an extension to the naive pair-counting,
weighted pair-counting counts the product of weights instead
of number of pairs.
Weighted pair-counting is used to estimate marked correlation functions
([3]_, section 2.2),
or to properly calculate the average of data per distance bin
(e.g. [4]_, section 2.1 on redshift).

.. [1] Gray and Moore,
       "N-body problems in statistical learning",
       Mining the sky, 2000,
       https://arxiv.org/abs/astro-ph/0012333

.. [2] Landy and Szalay,
       "Bias and variance of angular correlation functions",
       The Astrophysical Journal, 1993,
       http://adsabs.harvard.edu/abs/1993ApJ...412...64L

.. [3] Sheth, Connolly and Skibba,
       "Marked correlations in galaxy formation models",
       Arxiv e-print, 2005,
       https://arxiv.org/abs/astro-ph/0511773

.. [4] Hawkins, et al.,
       "The 2dF Galaxy Redshift Survey: correlation functions,
       peculiar velocities and the matter density of the Universe",
       Monthly Notices of the Royal Astronomical Society, 2002,
       http://adsabs.harvard.edu/abs/2003MNRAS.346...78H

.. [5] https://github.com/scipy/scipy/pull/5647#issuecomment-168474926

Examples
--------
You can count neighbors number between two kd-trees within a distance:

>>> import numpy as np
>>> from scipy.spatial import KDTree
>>> rng = np.random.default_rng()
>>> points1 = rng.random((5, 2))
>>> points2 = rng.random((5, 2))
>>> kd_tree1 = KDTree(points1)
>>> kd_tree2 = KDTree(points2)
>>> kd_tree1.count_neighbors(kd_tree2, 0.2)
1

This number is same as the total pair number calculated by
`query_ball_tree`:

>>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2)
>>> sum([len(i) for i in indexes])
1

)r   count_neighbors)r)   rJ   r   r   weights
cumulativer   s         r   r   KDTree.count_neighbors  s    d w&uZHHr   c                 $   > [         TU ]  XX45      $ )a  Compute a sparse distance matrix.

Computes a distance matrix between two KDTrees, leaving as zero
any distance greater than max_distance.

Parameters
----------
other : KDTree

max_distance : positive float

p : float, 1<=p<=infinity
    Which Minkowski p-norm to use.
    A finite large p may cause a ValueError if overflow can occur.

output_type : string, optional
    Which container to use for output data. Options: 'dok_matrix',
    'coo_matrix', 'dict', or 'ndarray'. Default: 'dok_matrix'.

    .. versionadded:: 1.6.0

Returns
-------
result : dok_matrix, coo_matrix, dict or ndarray
    Sparse matrix representing the results in "dictionary of keys"
    format. If a dict is returned the keys are (i,j) tuples of indices.
    If output_type is 'ndarray' a record array with fields 'i', 'j',
    and 'v' is returned,

Examples
--------
You can compute a sparse distance matrix between two kd-trees:

>>> import numpy as np
>>> from scipy.spatial import KDTree
>>> rng = np.random.default_rng()
>>> points1 = rng.random((5, 2))
>>> points2 = rng.random((5, 2))
>>> kd_tree1 = KDTree(points1)
>>> kd_tree2 = KDTree(points2)
>>> sdm = kd_tree1.sparse_distance_matrix(kd_tree2, 0.3)
>>> sdm.toarray()
array([[0.        , 0.        , 0.12295571, 0.        , 0.        ],
   [0.        , 0.        , 0.        , 0.        , 0.        ],
   [0.28942611, 0.        , 0.        , 0.2333084 , 0.        ],
   [0.        , 0.        , 0.        , 0.        , 0.        ],
   [0.24617575, 0.29571802, 0.26836782, 0.        , 0.        ]])

You can check distances above the `max_distance` are zeros:

>>> from scipy.spatial import distance_matrix
>>> distance_matrix(points1, points2)
array([[0.56906522, 0.39923701, 0.12295571, 0.8658745 , 0.79428925],
   [0.37327919, 0.7225693 , 0.87665969, 0.32580855, 0.75679479],
   [0.28942611, 0.30088013, 0.6395831 , 0.2333084 , 0.33630734],
   [0.31994999, 0.72658602, 0.71124834, 0.55396483, 0.90785663],
   [0.24617575, 0.29571802, 0.26836782, 0.57714465, 0.6473269 ]])

)r   sparse_distance_matrix)r)   rJ   max_distancer   r   r   s        r   r   KDTree.sparse_distance_matrix$  s    z w-1 	1r   )r   )
   TFTN)rP   r   r   NF)rP   r   )rP   r   set)rP   NT)rP   
dok_matrix)rQ   rR   rS   rT   rU   r]   r_   r`   r   r   r*   r   r   r   r   r   r   r   r   rV   r   r   s   @r   r
   r
      s    N`) )>'4 ''D '&   IN-11 a12661sj ;<;@KAZ19f.;`RIj :F>1 >1r   r
   c                 2   [         R                  " U 5      n U R                  u  pE[         R                  " U5      nUR                  u  pgXW:w  a  [        SU SU S35      eXF-  U-  U::  a=  [	        U SS2[         R
                  SS24   U[         R
                  SS2SS24   U5      $ [         R                  " XF4[        S9nXF:  a(  [        U5       H  n	[	        X	   X5      XSS24'   M     U$ [        U5       H  n
[	        XU
   U5      USS2U
4'   M     U$ )a  Compute the distance matrix.

Returns the matrix of all pair-wise distances.

Parameters
----------
x : (M, K) array_like
    Matrix of M vectors in K dimensions.
y : (N, K) array_like
    Matrix of N vectors in K dimensions.
p : float, 1 <= p <= infinity
    Which Minkowski p-norm to use.
threshold : positive int
    If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead
    of large temporary arrays.

Returns
-------
result : (M, N) ndarray
    Matrix containing the distance from every vector in `x` to every vector
    in `y`.

Examples
--------
>>> from scipy.spatial import distance_matrix
>>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]])
array([[ 1.        ,  1.41421356],
       [ 1.41421356,  1.        ]])

zx contains z$-dimensional vectors but y contains z-dimensional vectorsN)r   )	r   r   r'   r   r   newaxisemptyr#   range)r   r   r   	thresholdr(   r   nkkresultr   js              r   r   r   e  s   @ 	

1A77DA


1AGGEAw;qc)M435 6 	6 	s1u	!!AbjjN"3Abjj1n4EaHH1%e,51X0a:s 
  1X0Q4:qs r   )r   )r   i@B )numpyr   _ckdtreer   r   __all__r   r   r	   r
   r   rW   r   r   <module>r      sC     *"
1/h 5FiL iLXT
1W T
1n3r   