
    (ph"=                     d    S r S/rSSKJrJrJrJr  SSKJr  SSK	J
r
  SSKJr  SSKJr    S
S	 jrg)a  
Copyright (C) 2010 David Fong and Michael Saunders

LSMR uses an iterative method.

07 Jun 2010: Documentation updated
03 Jun 2010: First release version in Python

David Chin-lung Fong            clfong@stanford.edu
Institute for Computational and Mathematical Engineering
Stanford University

Michael Saunders                saunders@stanford.edu
Systems Optimization Laboratory
Dept of MS&E, Stanford University.

lsmr    )zerosinf
atleast_1dresult_type)norm)sqrt)aslinearoperator)
_sym_orthoNc	                    [        U 5      n [        U5      nUR                  S:  a  UR                  5       nSn	Sn
SnSnSnU R                  u  p[        X/5      nUc  UnUc  [        X[        5      nO[        XU[        5      nU(       a`  [        S5        [        S5        [        S	U S
U S35        [        SUS S35        [        SUS SUS S35        [        SUS SUS S35        Un[        U5      nUc  [        UU5      nUR                  5       nO8[        UR                  5       5      nUU R                  U5      -
  n[        U5      nUS:  a%  SU-  U-  nU R                  U5      n[        U5      nO[        UU5      nSnUS:  a  SU-  U-  nSnUU-  nUnSnSnSnSnUR                  5       n[        UU5      n Un!Sn"Sn#Sn$Sn%Sn&Sn'UU-  n(Sn)Sn*[        U(5      n+Sn,Sn-Sn.Sn/US:  a  SU-  n/Un0UU-  n1U1S:X  a  U(       a  [        U	S   5        UU.UU0U1U+U,U-4$ US:X  a  SUS'   UU.UU0U1U+U,U-4$ U(       aZ  [        S5        [        X5        Sn2UU-  n3US SUS   S 3n4SU0S SU1S 3n5SU2S SU3S 3n6[        SR                  U4U5U6/5      5        UU:  Ga  US-   nUU* -  nUU R                  U5      -  n[        U5      nUS:  a;  USU-  -  nUU* -  nUU R                  U5      -  n[        U5      nUS:  a  USU-  -  n[!        UU5      u  n7n8n9Un:[!        U9U5      u  n;n<nU<U-  n=U;U-  nUn>U&n?UU-  n@UU-  nA[!        UU-  U=5      u  nnnUU-  n&U* U-  nU U@U-  U:U>-  -  * -  n U U-  n UU&UU-  -  U -  -  nUU=U-  * -  nUU-  nU7U!-  nBU8* U!-  nCU;UB-  nDU<* UB-  n!U%nE[!        U#U@5      u  nFnGnHUGU-  n%UFU-  n#UG* U"-  UFUD-  -   n"U?UEU$-  -
  UH-  n$U&U%U$-  -
  U#-  nIU'UCUC-  -   n'[        U'U"UI-
  S-  -   U!U!-  -   5      n0U(UU-  -   n([        U(5      n+U(UU-  -   n([#        U)U>5      n)US:  a  [        U*U>5      n*[#        U)WA5      [        U*UA5      -  n,[%        U5      n1[        U5      n-U0U-  n2U+U0-  S:w  a	  U1U+U0-  -  n3O[&        n3SU,-  nJU2SU+U--  U-  -   -  nKXCU+-  U--  U-  -   nLUU:  a  Sn.SWJ-   S::  a  Sn.SU3-   S::  a  S n.SWK-   S::  a  S!n.WJU/::  a  S"n.U3U::  a  Sn.U2WL::  a  Sn.U(       a  US#::  d9  US$::  d3  UUS$-
  :  d*  US$-  S:X  d!  WJS%U/-  ::  d  U3S%U-  ::  d  U2S%WL-  ::  d  U.S:w  aj  X:  a  Sn[        S5        [        X5        US-   nUS SUS   S 3n4SU0S SU1S 3n5SU2S SU3S 3n6SU+S SU,S 3nM[        SR                  U4U5U6UM/5      5        U.S:  a  O	UU:  a  GM  U(       a  [        S5        [        S&5        [        U	U.   5        [        S'U.S S(U0S 35        [        S)U+S S*U1S 35        [        S+US S,U,S 35        [        S-U-S 35        [        W4W55        [        W6WM5        UU.UU0U1U+U,U-4$ ).aG  Iterative solver for least-squares problems.

lsmr solves the system of linear equations ``Ax = b``. If the system
is inconsistent, it solves the least-squares problem ``min ||b - Ax||_2``.
``A`` is a rectangular matrix of dimension m-by-n, where all cases are
allowed: m = n, m > n, or m < n. ``b`` is a vector of length m.
The matrix A may be dense or sparse (usually sparse).

Parameters
----------
A : {sparse array, ndarray, LinearOperator}
    Matrix A in the linear system.
    Alternatively, ``A`` can be a linear operator which can
    produce ``Ax`` and ``A^H x`` using, e.g.,
    ``scipy.sparse.linalg.LinearOperator``.
b : array_like, shape (m,)
    Vector ``b`` in the linear system.
damp : float
    Damping factor for regularized least-squares. `lsmr` solves
    the regularized least-squares problem::

     min ||(b) - (  A   )x||
         ||(0)   (damp*I) ||_2

    where damp is a scalar.  If damp is None or 0, the system
    is solved without regularization. Default is 0.
atol, btol : float, optional
    Stopping tolerances. `lsmr` continues iterations until a
    certain backward error estimate is smaller than some quantity
    depending on atol and btol.  Let ``r = b - Ax`` be the
    residual vector for the current approximate solution ``x``.
    If ``Ax = b`` seems to be consistent, `lsmr` terminates
    when ``norm(r) <= atol * norm(A) * norm(x) + btol * norm(b)``.
    Otherwise, `lsmr` terminates when ``norm(A^H r) <=
    atol * norm(A) * norm(r)``.  If both tolerances are 1.0e-6 (default),
    the final ``norm(r)`` should be accurate to about 6
    digits. (The final ``x`` will usually have fewer correct digits,
    depending on ``cond(A)`` and the size of LAMBDA.)  If `atol`
    or `btol` is None, a default value of 1.0e-6 will be used.
    Ideally, they should be estimates of the relative error in the
    entries of ``A`` and ``b`` respectively.  For example, if the entries
    of ``A`` have 7 correct digits, set ``atol = 1e-7``. This prevents
    the algorithm from doing unnecessary work beyond the
    uncertainty of the input data.
conlim : float, optional
    `lsmr` terminates if an estimate of ``cond(A)`` exceeds
    `conlim`.  For compatible systems ``Ax = b``, conlim could be
    as large as 1.0e+12 (say).  For least-squares problems,
    `conlim` should be less than 1.0e+8. If `conlim` is None, the
    default value is 1e+8.  Maximum precision can be obtained by
    setting ``atol = btol = conlim = 0``, but the number of
    iterations may then be excessive. Default is 1e8.
maxiter : int, optional
    `lsmr` terminates if the number of iterations reaches
    `maxiter`.  The default is ``maxiter = min(m, n)``.  For
    ill-conditioned systems, a larger value of `maxiter` may be
    needed. Default is False.
show : bool, optional
    Print iterations logs if ``show=True``. Default is False.
x0 : array_like, shape (n,), optional
    Initial guess of ``x``, if None zeros are used. Default is None.

    .. versionadded:: 1.0.0

Returns
-------
x : ndarray of float
    Least-square solution returned.
istop : int
    istop gives the reason for stopping::

      istop   = 0 means x=0 is a solution.  If x0 was given, then x=x0 is a
                  solution.
              = 1 means x is an approximate solution to A@x = B,
                  according to atol and btol.
              = 2 means x approximately solves the least-squares problem
                  according to atol.
              = 3 means COND(A) seems to be greater than CONLIM.
              = 4 is the same as 1 with atol = btol = eps (machine
                  precision)
              = 5 is the same as 2 with atol = eps.
              = 6 is the same as 3 with CONLIM = 1/eps.
              = 7 means ITN reached maxiter before the other stopping
                  conditions were satisfied.

itn : int
    Number of iterations used.
normr : float
    ``norm(b-Ax)``
normar : float
    ``norm(A^H (b - Ax))``
norma : float
    ``norm(A)``
conda : float
    Condition number of A.
normx : float
    ``norm(x)``

Notes
-----

.. versionadded:: 0.11.0

References
----------
.. [1] D. C.-L. Fong and M. A. Saunders,
       "LSMR: An iterative algorithm for sparse least-squares problems",
       SIAM J. Sci. Comput., vol. 33, pp. 2950-2971, 2011.
       :arxiv:`1006.0758`
.. [2] LSMR Software, https://web.stanford.edu/group/SOL/software/lsmr/

Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_array
>>> from scipy.sparse.linalg import lsmr
>>> A = csc_array([[1., 0.], [1., 1.], [0., 1.]], dtype=float)

The first example has the trivial solution ``[0, 0]``

>>> b = np.array([0., 0., 0.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
0
>>> x
array([0., 0.])

The stopping code ``istop=0`` returned indicates that a vector of zeros was
found as a solution. The returned solution `x` indeed contains
``[0., 0.]``. The next example has a non-trivial solution:

>>> b = np.array([1., 0., -1.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
1
>>> x
array([ 1., -1.])
>>> itn
1
>>> normr
4.440892098500627e-16

As indicated by ``istop=1``, `lsmr` found a solution obeying the tolerance
limits. The given solution ``[1., -1.]`` obviously solves the equation. The
remaining return values include information about the number of iterations
(`itn=1`) and the remaining difference of left and right side of the solved
equation.
The final example demonstrates the behavior in the case where there is no
solution for the equation:

>>> b = np.array([1., 0.01, -1.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
2
>>> x
array([ 1.00333333, -0.99666667])
>>> A.dot(x)-b
array([ 0.00333333, -0.00333333,  0.00333333])
>>> normr
0.005773502691896255

`istop` indicates that the system is inconsistent and thus `x` is rather an
approximate solution to the corresponding least-squares problem. `normr`
contains the minimal distance that was found.
   )z9The exact solution is x = 0, or x = x0, if x0 was given  z:Ax - b is small enough, given atol, btol                  z:The least-squares solution is good enough, given atol     z:The estimate of cond(Abar) has exceeded conlim            z:Ax - b is small enough for this machine                   z:The least-squares solution is good enough for this machinez:Cond(Abar) seems to be too large for this machine         z:The iteration limit has been reached                      z(   itn      x(1)       norm r    norm Arz% compatible   LS      norm A   cond A   r    z2LSMR            Least-squares solution of  Ax = b
zThe matrix A has z
 rows and z columnszdamp = z20.14e
zatol = z8.2ez                 conlim = zbtol = z             maxiter = 8gg}Ô%IT 6gz12.5ez10.3ez  z8.1e                   (   
   g?zLSMR finishedzistop =z    normr =z    normA =z    normAr =zitn   =z    condA =z    normx =)r
   r   ndimsqueezeshapeminr   floatprintr   r   copymatvecrmatvecr	   joinr   maxabsr   )NAbdampatolbtolconlimmaxitershowx0msghdg1hdg2pfreqpcountmnminDimdtypeunormbxbetavalphaitnzetabaralphabarrhorhobarcbarsbarhhbarbetaddbetadrhodoldtautildeold
thetatildezetadnormA2maxrbarminrbarnormAcondAnormxistopctolnormrnormartest1test2str1str2str3chatshatalphahatrhooldcsthetanew	rhobaroldzetaoldthetabarrhotemp	betaacute	betacheckbetahatthetatildeold	ctildeold	stildeoldrhotildeoldtaudtest3t1rtolstr4sN                                                                                 S/var/www/html/venv/lib/python3.13/site-packages/scipy/sparse/linalg/_isolve/lsmr.pyr   r      s<   P 	A1AvvzIIKIC 6D2DEF77DA ![F	zA%(A"e,c
CD!!Jqc:;V}B'(T{"<VDMLMT{"9'"RHI	AGE	z!UOzz|rwwy!OAwaxXNIIaLQ!UOqyY!O CdlGH
CFDD	AE?D FEGKJD	A U]FGGLEEE EDz6zE T\F{#a&M%eVUE5@@z"%eVUE5@@c
db1Q4,'5-q/E$<qt-bggtT4()* -Ag 	
eV	QXXa[Aw!8!d(OA$JA1AGEqya%i   *(D9dH x.	1cU7U7 	#:*'s
H=dFg~&7" 	8c>Vi%7899		dcFl#t++	3	Q
 6M	EFN	 i-i
 #,6w,I)	9k'
f$e#i'&99
 !<<KzK//7:	I%%Q%$,**Vf_<= $+%V%%-' gy)7'9-GGW%GW(==
 WQ
 EMaeem,EEE	a%%-%//0UlU*U22 '>Eu9>Eu9>Er6Q;E D=ED=ED=E RSBYC7R<,?bA5C$J#6t##*)<
?F#J$%!b1Q4,/5-q7E$<qt55,ad|4bggtT467819o -v c
oc%jbzU4L9:E$<|F4=ABBx{5,78E$<()dDdDeS%u<<    )g        ư>ry   g    חANFN)__doc____all__numpyr   r   r   r   numpy.linalgr   mathr	   scipy.sparse.linalg._interfacer
    scipy.sparse.linalg._isolve.lsqrr   r   r   rx   rw   <module>r      s3   $ ( 5 5   ; 7 7:&*I=rx   