
    (ph                     f    S r SSKrSSKJr  SSKJr  SSKJr  SSKJ	r
  SSKJrJr  S/rS rS
S	 jrg)zSparse matrix norms.

    N)issparse)svds)convert_pydata_sparse_to_scipy)sqrtabsnormc                 ~    [         R                  R                  U 5      n[        R                  R                  U5      $ )N)sp_sputils_todatanplinalgr   )xdatas     L/var/www/html/venv/lib/python3.13/site-packages/scipy/sparse/linalg/_norm.py_sparse_frobenius_normr      s)    ;;q!D99>>$    c                 P   [        U SS9n [        U 5      (       d  [        S5      eUc  US;   a  [        U 5      $ U R	                  5       n Uc  [        [        U R                  5      5      nO6[        U[
        5      (       d!  Sn [        U5      nX$:w  a  [        U5      eU4nU R                  n[        U5      S:X  Gag  Uu  pxU* Us=::  a  U:  a  O  OU* Us=::  a  U:  d!  O  SU< S	U R                  < 3n	[        U	5      eXv-  X-  :X  a  [        S
5      eUS:X  a  [        U SSS9u  pn
US   $ US:X  a  [        eUS:X  a&  [        U 5      R!                  US9R#                  5       $ U[$        R&                  :X  a&  [        U 5      R!                  US9R#                  5       $ US:X  a&  [        U 5      R!                  US9R)                  5       $ U[$        R&                  * :X  a&  [        U 5      R!                  US9R)                  5       $ US;   a  [        U 5      $ [        S5      e[        U5      S:X  Ga  Uu  nU* Us=::  a  U:  d!  O  SU< S	U R                  < 3n	[        U	5      eU[$        R&                  :X  a  [        U 5      R#                  US9nOU[$        R&                  * :X  a  [        U 5      R)                  US9nOUS:X  a  U S:g  R!                  US9nOUS:X  a  [        U 5      R!                  US9nO|US;   a1  [+        [        U 5      R-                  S5      R!                  US95      nOE US-     [$        R,                  " [        U 5      R-                  U5      R!                  US9SU-  5      n[/        US5      (       a  UR1                  5       R3                  5       $ [/        US5      (       a  UR4                  R3                  5       $ UR3                  5       $ [        S5      e! [         a  n[        U5      UeSnAff = f! [         a  n[        S5      UeSnAff = f)az	  
Norm of a sparse matrix

This function is able to return one of seven different matrix norms,
depending on the value of the ``ord`` parameter.

Parameters
----------
x : a sparse array
    Input sparse array.
ord : {non-zero int, inf, -inf, 'fro'}, optional
    Order of the norm (see table under ``Notes``). inf means numpy's
    `inf` object.
axis : {int, 2-tuple of ints, None}, optional
    If `axis` is an integer, it specifies the axis of `x` along which to
    compute the vector norms.  If `axis` is a 2-tuple, it specifies the
    axes that hold 2-D matrices, and the matrix norms of these matrices
    are computed.  If `axis` is None then either a vector norm (when `x`
    is 1-D) or a matrix norm (when `x` is 2-D) is returned.

Returns
-------
n : float or ndarray

Notes
-----
Some of the ord are not implemented because some associated functions like,
_multi_svd_norm, are not yet available for sparse array.

This docstring is modified based on numpy.linalg.norm.
https://github.com/numpy/numpy/blob/main/numpy/linalg/linalg.py

The following norms can be calculated:

=====  ============================
ord    norm for sparse arrays
=====  ============================
None   Frobenius norm
'fro'  Frobenius norm
inf    max(sum(abs(x), axis=1))
-inf   min(sum(abs(x), axis=1))
0      abs(x).sum(axis=axis)
1      max(sum(abs(x), axis=0))
-1     min(sum(abs(x), axis=0))
2      Spectral norm (the largest singular value)
-2     Not implemented
other  Not implemented
=====  ============================

The Frobenius norm is given by [1]_:

    :math:`||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}`

References
----------
.. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
    Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15

Examples
--------
>>> from scipy.sparse import csr_array, diags_array
>>> import numpy as np
>>> from scipy.sparse.linalg import norm
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],
       [-1, 0, 1],
       [ 2, 3, 4]])

>>> b = csr_array(b)
>>> norm(b)
7.745966692414834
>>> norm(b, 'fro')
7.745966692414834
>>> norm(b, np.inf)
9
>>> norm(b, -np.inf)
2
>>> norm(b, 1)
7
>>> norm(b, -1)
6

The matrix 2-norm or the spectral norm is the largest singular
value, computed approximately and with limitations.

>>> b = diags_array([-1, 1], [0, 1], shape=(9, 10))
>>> norm(b, 2)
1.9753...
csr)target_formatz*input is not sparse. use numpy.linalg.normN)Nfrofz6'axis' must be None, an integer or a tuple of integers   zInvalid axis z for an array with shape zDuplicate axes given.   lobpcg)ksolverr   )axis)Nr   r   z Invalid norm order for matrices.)r   NzInvalid norm order for vectors.toarrayAz&Improper number of dimensions to norm.)r   r   	TypeErrorr   tocsrtuplerangendim
isinstanceintlenshape
ValueErrorr   NotImplementedErrorr   summaxr   infminr   powerhasattrr!   ravelr"   )r   ordr   msgint_axisendrow_axiscol_axismessage_saMs                 r   r   r      s   | 	'q>AA;;DEE |11%a(( 	
	A|U166]#e$$F	(4yH C. {	
B
4yA~!x$"$")=2)=%dX-FqwwkRGW%%=HM)455!81(3GA!Q4KBY%%AXq6::8:,0022BFF]q6::8:,0022BYq6::8:,0022RVVG^q6::8:,0022&&)!,,?@@	Taq2%dX-FqwwkRGW%%"&&=A


"ARVVG^A


"AAXa!$AAXA


"AISV\\!_((a(01AKa Qc*..A.6C@A1i  99;$$&&Q__3399;779ABBA  	(C.a'	(l  K !BCJKs0   O, 3P
 ,
P6PP

P%P  P%)NN)__doc__numpyr   scipy.sparser   scipy.sparse.linalgr   scipy.sparse._sputilsr   sparser
   r   r   __all__r   r    r   r   <module>rI      s1     ! $ @  ( 
oCr   