
    (phF                         S r Sr/ SQrSSKrSSKJr  SSKJrJ	r	  SSK
JrJrJrJrJr  SS	KJr  SS
KJr   " S S\5      rS r " S S\\	5      r " S S\\5      rg)z#Compressed Sparse Row matrix formatzrestructuredtext en)	csr_array
csr_matrixisspmatrix_csr    N   )spmatrix)_spbasesparray)	csr_tocsc	csr_tobsrcsr_count_blocksget_csr_submatrixcsr_sample_values)upcast)
_cs_matrixc                      \ rS rSrSrSrSS jr\R                  R                  \l        SS jr	\R                  R                  \	l        SS jr
\R                  R                  \
l        SS jr\R                  R                  \l        SS	 jr\R                  R                  \l        \S
 5       rS rS rS rS rS rS rS rS rS rS rS rS rS rS rSrg)	_csr_base   csr)r      Nc                     Ub  US:w  a  [        S5      eU R                  S:X  a  U(       a  U R                  5       $ U $ U R                  u  p4U R	                  U R
                  U R                  U R                  4XC4US9$ )N)r   r   zvSparse arrays/matrices do not support an 'axes' parameter because swapping dimensions is the only logical permutation.r   shapecopy)
ValueErrorndimr   r   _csc_containerdataindicesindptr)selfaxesr   MNs        D/var/www/html/venv/lib/python3.13/site-packages/scipy/sparse/_csr.py	transpose_csr_base.transpose   s     L M M 99>"&499;0D0zz""DIIt||$(KK$19:T # K 	K    c                    U R                   S:w  a  [        S5      eU R                  U R                  U R                  S9nU R                  5         U R                  U R                  U R                  pTnUR                  UR                  pv[        U R                  S   5       H6  nX8   n	X8S-      n
XIU
 R                  5       Xh'   XYU
 R                  5       Xx'   M8     U$ )Nr   z.Cannot convert a 1d sparse array to lil formatdtyper   r   )r   r   _lil_containerr   r*   sum_duplicatesr   r   r   rowsrangetolist)r    r   lilptrinddatr-   r   nstartends              r$   tolil_csr_base.tolil$   s    99>MNN!!$**DJJ!?kk$,,tyyXXsxxdtzz!}%AFEc(Cn++-DGn++-DG	 & 
r'   c                 4    U(       a  U R                  5       $ U $ Nr   )r    r   s     r$   tocsr_csr_base.tocsr7   s    99;Kr'   c           
      ~   U R                   S:w  a  [        S5      eU R                  u  p#U R                  U R                  U R
                  4[        U R                  U5      S9n[        R                  " US-   US9n[        R                  " U R                  US9n[        R                  " U R                  [        U R                  5      S9n[        X#U R                  R                  U5      U R
                  R                  U5      U R                  UUU5        U R                  XvU4U R                  S9nSUl        U$ )Nr   z.Cannot convert a 1d sparse array to csc formatmaxvalr   r)   r   T)r   r   r   _get_index_dtyper   r   maxnnznpemptyr   r*   r
   astyper   r   has_sorted_indices)	r    r   r"   r#   	idx_dtyper   r   r   As	            r$   tocsc_csr_base.tocsc?   s   99>MNNzz))4;;*E+.txx+; * =	!a%y1((48895xxtzz(:;!++$$Y/,,%%i0))	  7tzzJ#r'   c                    U R                   S:w  a  [        S5      eUc  SSKJn  U R	                  U" U 5      S9$ US:X  aN  U R
                  R                  SSS5      U R                  U R                  4nU R                  X@R                  US9$ Uu  pVU R                  u  pxUS:  d  US:  d  Xu-  S	:w  d  X-  S	:w  a  [        S
U 35      e[        XxXVU R                  U R                  5      n	U R                  U R                  U R                  4[        X-  U	5      S9n
[        R                  " Xu-  S-   U
S9n[        R                  " XS9n[        R                   " XU4U R"                  S9n[%        XxXVU R                  R'                  U
5      U R                  R'                  U
5      U R
                  XUR)                  5       5
        U R                  XU4U R                  S9$ )Nr   z.Cannot convert a 1d sparse array to bsr formatr   )estimate_blocksize)	blocksize)r   r   r   r   zinvalid blocksize r?   r)   rA   )r   r   _spfuncsrN   tobsrr   reshaper   r   _bsr_containerr   r   rB   rC   rE   rF   zerosr*   r   rG   ravel)r    rO   r   rN   arg1RCr"   r#   blksrI   r   r   r   s                 r$   rR   _csr_base.tobsrW   s   99>MNN4::(:4(@:AA%II%%b1-dll4;;GD&&t::D&II CA**CA1uA!quz #5i[!ABB#ADKKED--t{{DLL.I/214 . @IXXad1fI6Fhht5G88TAJdjj9DaAkk((3ll)))4iitzz|	5 &&'tzz '  r'   c                     U $ )zBswap the members of x if this is a column-oriented matrix
         xs    r$   _swap_csr_base._swap   s	     r'   c              #     #    U R                   S:X  a  U R                  R                  S5      nSn[        U R                  U R
                  5       H&  u  p4[        X2-
  5       H  nUv   M	     Uv   US-   nM(     [        U R                  S   U-
  5       H  nUv   M	     g [        R                  " SU R                  R                  S9n[        U [        5      (       a  U R                  SS  OSU R                  S   4nSnU R                  SS   H=  n	X-
  US'   U R                  X n
U R
                  X nU R                  XU4USS9v   U	nM?     g 7f)Nr   r   r   r)   Tr   )r   r*   typezipr   r   r.   r   rE   rU   r   
isinstancer	   	__class__)r    zerouvd_r   r   i0i1r   r   s               r$   __iter___csr_base.__iter__   s/    99>::??1%DADLL$))4quAJ &E	 5
 4::a=1,-
 .!4;;#4#45",T7";";

12!TZZPQ]AS++ab/BF1Ill2)G99R#D..$!8D.QQB "s   EEc                    U R                   S:X  a4  US;  a  [        SU S35      eU R                  SU R                  S   4SS9$ U R                  u  p#[	        U5      nUS:  a  X-  nUS:  d  X:  a  [        SU-  5      e[        X#U R                  U R                  U R                  XS-   SU5	      u  pEnU R                  XeU4SU4U R                  S	S
9$ )zMReturns a copy of row i of the matrix, as a (1 x n)
CSR matrix (row vector).
r   )r   rP   zindex (z) out of ranger   Tr;   index (%d) out of rangeFr   r*   r   )r   
IndexErrorrS   r   intr   r   r   r   rf   r*   r    ir"   r#   r   r   r   s          r$   _getrow_csr_base._getrow   s     99> 71#^!<==<<DJJqM 2<>>zzFq5FAq5AF6:;; 1$++t||TYYq5!Q!H~~tf5aV$(JJU  < 	<r'   c                 Z   U R                   S:X  a  [        S5      eU R                  u  p#[        U5      nUS:  a  X-  nUS:  d  X:  a  [	        SU-  5      e[        X#U R                  U R                  U R                  SX!US-   5	      u  pEnU R                  XeU4US4U R                  SS9$ )zLReturns a copy of column i. A (m x 1) sparse array (column vector).
        r   z4getcol not provided for 1d arrays. Use indexing A[j]r   rq   Frr   )r   r   r   rt   rs   r   r   r   r   rf   r*   ru   s          r$   _getcol_csr_base._getcol   s     99>STTzzFq5FAq5AF6:;; 1$++t||TYY1Q!H~~tf5aV$(JJU  < 	<r'   c                     [         R                  " U R                  U:H  5      nUR                  (       a  U R                  US      $ U R                  R
                  R                  S5      $ Nr   )rE   flatnonzeror   sizer   r*   rc   )r    idxspots      r$   _get_int_csr_base._get_int   sL    ~~dllc129999T!W%%yy##A&&r'   c                     U[        S 5      :X  a  U R                  5       $ UR                  S;   a/  U R                  SUSS9nUR	                  UR
                  S   5      $ U R                  U5      $ )Nr   Nr   Tr;   rP   )slicer   step_get_submatrixrS   r   _minor_slice)r    r   rets      r$   
_get_slice_csr_base._get_slice   se    %+99;88y %%a4%8C;;syy}--  %%r'   c                    U R                  U R                  5      n[        R                  " XS9nUR                  S:X  a  U R                  / U R                  S9$ SU R                  S   pC[        R                  " XS9n[        R                  " XS9n[        R                  " UR                  U R                  S9n[        X4U R                  U R                  U R                  UR                  XVU5	        UR                  S   S:  a  UR                  OUR                  S   4nU R                  UR                  U5      5      $ )Nr)   r   r   )rB   r   rE   asarrayr   rf   r*   r   
zeros_likerF   r   r   r   rS   )	r    r   rI   r"   r#   rowcolval	new_shapes	            r$   
_get_array_csr_base._get_array   s    ))$,,7	jj.88q=>>"DJJ>77$**Q-1mmC1jj.hhsxxtzz2!T\\499((Cc	3 "%1!1CII		!	~~ckk)455r'   c                 B    U R                  U5      R                  U5      $ r:   )rw   _minor_index_fancyr    r   r   s      r$   _get_intXarray_csr_base._get_intXarray   s    ||C 33C88r'   c                    UR                   S;   a  U R                  XSS9$ U R                  u  p4UR                  U5      u  pVnU R                  XS-    u  pU R                  X n
U R
                  X nUS:  a
  X:  X:  -  nO	X:*  X:  -  n[        U5      S:  a  XU-
  U-  S:H  -  nX   U-
  U-  n
X   n[        R                  " S[        U
5      /5      nUS:  a  US S S2   n[        U
S S S2   5      n
S[        S[        [        R                  " [        Xe-
  5      U-  5      5      5      4nU R                  XU4UU R                  SS	9$ )
Nr   Tr;   r   r   r   rP   Frr   )r   r   r   r   r   r   absrE   arraylenrC   rt   ceilfloatrf   r*   )r    r   r   r"   r#   r5   stopstrideiijjrow_indicesrow_datar2   
row_indptrr   s                  r$   _get_intXslice_csr_base._get_intXslice   sg   88y &&sd&;; zz!kk!nVSQ'll2)99R#A:'K,>?C'K,>?Cv;?%'61Q66C"'%/F:=XXq#k"234
A:"~Hk$B$/0KC3rwwuT\':V'CDEFG~~xjA$(JJU  < 	<r'   c                 ~    UR                   S;   a  U R                  XSS9$ U R                  U5      R                  US9$ )Nr   Tr;   minor)r   r   _major_slicer   s      r$   _get_sliceXint_csr_base._get_sliceXint  sC    88y &&sd&;;  %4434??r'   c                 B    U R                  U5      R                  U5      $ r:   )r   r   r   s      r$   _get_sliceXarray_csr_base._get_sliceXarray  s      %88==r'   c                     U R                  U5      R                  US9nUR                  S:  a  UR                  UR                  5      $ U$ )Nr   r   )_major_index_fancyr   r   rS   r   )r    r   r   ress       r$   _get_arrayXint_csr_base._get_arrayXint  sC    %%c*999D88a<;;syy))
r'   c                     UR                   S;  a@  [        R                  " UR                  U R                  S   5      6 nU R                  X5      $ U R                  U5      R                  US9$ )Nr   r   r   )r   rE   aranger   r   _get_arrayXarrayr   r   r   s      r$   _get_arrayXslice_csr_base._get_arrayXslice  s]    889$))S[[A78C((22&&s+:::EEr'   c                 (    U R                  SX5        g r}   )	_set_manyr    r   r_   s      r$   _set_int_csr_base._set_int  s    q#!r'   c                     [         R                  " X!R                  5      nU R                  [         R                  " U5      X5        g r:   )rE   broadcast_tor   r   r   r   s      r$   
_set_array_csr_base._set_array  s+    OOAyy)r}}S)32r'   r]   )NF)F)NT)__name__
__module____qualname____firstlineno___format	_allow_ndr%   r   __doc__r7   r<   rK   rR   staticmethodr`   rn   rw   rz   r   r   r   r   r   r   r   r   r   r   r   __static_attributes__r]   r'   r$   r   r      s    GI
K  ))11I" MM))EM MM))EM, MM))EM"H MM))EM  
0<(< '&6 9<B@
>F"3r'   r   c                 "    [        U [        5      $ )a  Is `x` of csr_matrix type?

Parameters
----------
x
    object to check for being a csr matrix

Returns
-------
bool
    True if `x` is a csr matrix, False otherwise

Examples
--------
>>> from scipy.sparse import csr_array, csr_matrix, coo_matrix, isspmatrix_csr
>>> isspmatrix_csr(csr_matrix([[5]]))
True
>>> isspmatrix_csr(csr_array([[5]]))
False
>>> isspmatrix_csr(coo_matrix([[5]]))
False
)re   r   r^   s    r$   r   r     s    . a$$r'   c                       \ rS rSrSrSrg)r   i:  a  
Compressed Sparse Row array.

This can be instantiated in several ways:
    csr_array(D)
        where D is a 2-D ndarray

    csr_array(S)
        with another sparse array or matrix S (equivalent to S.tocsr())

    csr_array((M, N), [dtype])
        to construct an empty array with shape (M, N)
        dtype is optional, defaulting to dtype='d'.

    csr_array((data, (row_ind, col_ind)), [shape=(M, N)])
        where ``data``, ``row_ind`` and ``col_ind`` satisfy the
        relationship ``a[row_ind[k], col_ind[k]] = data[k]``.

    csr_array((data, indices, indptr), [shape=(M, N)])
        is the standard CSR representation where the column indices for
        row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their
        corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``.
        If the shape parameter is not supplied, the array dimensions
        are inferred from the index arrays.

Attributes
----------
dtype : dtype
    Data type of the array
shape : 2-tuple
    Shape of the array
ndim : int
    Number of dimensions (this is always 2)
nnz
size
data
    CSR format data array of the array
indices
    CSR format index array of the array
indptr
    CSR format index pointer array of the array
has_sorted_indices
has_canonical_format
T

Notes
-----

Sparse arrays can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.

Advantages of the CSR format
  - efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
  - efficient row slicing
  - fast matrix vector products

Disadvantages of the CSR format
  - slow column slicing operations (consider CSC)
  - changes to the sparsity structure are expensive (consider LIL or DOK)

Canonical Format
    - Within each row, indices are sorted by column.
    - There are no duplicate entries.

Examples
--------

>>> import numpy as np
>>> from scipy.sparse import csr_array
>>> csr_array((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_array((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_array((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

Duplicate entries are summed together:

>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_array((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
       [0, 2, 0],
       [0, 4, 0]])

As an example of how to construct a CSR array incrementally,
the following snippet builds a term-document array from texts:

>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
...     for term in d:
...         index = vocabulary.setdefault(term, len(vocabulary))
...         indices.append(index)
...         data.append(1)
...     indptr.append(len(indices))
...
>>> csr_array((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
       [0, 1, 1, 1]])

r]   Nr   r   r   r   r   r   r]   r'   r$   r   r   :      wr'   r   c                       \ rS rSrSrSrg)r   i  a/  
Compressed Sparse Row matrix.

This can be instantiated in several ways:
    csr_matrix(D)
        where D is a 2-D ndarray

    csr_matrix(S)
        with another sparse array or matrix S (equivalent to S.tocsr())

    csr_matrix((M, N), [dtype])
        to construct an empty matrix with shape (M, N)
        dtype is optional, defaulting to dtype='d'.

    csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
        where ``data``, ``row_ind`` and ``col_ind`` satisfy the
        relationship ``a[row_ind[k], col_ind[k]] = data[k]``.

    csr_matrix((data, indices, indptr), [shape=(M, N)])
        is the standard CSR representation where the column indices for
        row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their
        corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``.
        If the shape parameter is not supplied, the matrix dimensions
        are inferred from the index arrays.

Attributes
----------
dtype : dtype
    Data type of the matrix
shape : 2-tuple
    Shape of the matrix
ndim : int
    Number of dimensions (this is always 2)
nnz
size
data
    CSR format data array of the matrix
indices
    CSR format index array of the matrix
indptr
    CSR format index pointer array of the matrix
has_sorted_indices
has_canonical_format
T

Notes
-----

Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.

Advantages of the CSR format
  - efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
  - efficient row slicing
  - fast matrix vector products

Disadvantages of the CSR format
  - slow column slicing operations (consider CSC)
  - changes to the sparsity structure are expensive (consider LIL or DOK)

Canonical Format
    - Within each row, indices are sorted by column.
    - There are no duplicate entries.

Examples
--------

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

Duplicate entries are summed together:

>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
       [0, 2, 0],
       [0, 4, 0]])

As an example of how to construct a CSR matrix incrementally,
the following snippet builds a term-document matrix from texts:

>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
...     for term in d:
...         index = vocabulary.setdefault(term, len(vocabulary))
...         indices.append(index)
...         data.append(1)
...     indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
       [0, 1, 1, 1]])

r]   Nr   r]   r'   r$   r   r     r   r'   r   )r   __docformat____all__numpyrE   _matrixr   _baser   r	   _sparsetoolsr
   r   r   r   r   _sputilsr   _compressedr   r   r   r   r   r]   r'   r$   <module>r      sb    )%
7   #A A  #J3
 J3Z%6x	7 xvx9 xr'   