
    (ph+                         S r Sr/ SQrSSKrSSKJr  SSKJrJ	r	  SSK
JrJr  SS	KJr  SS
KJr   " S S\5      rS r " S S\\	5      r " S S\\5      rg)z&Compressed Sparse Column matrix formatzrestructuredtext en)	csc_array
csc_matrixisspmatrix_csc    N   )spmatrix)_spbasesparray)	csc_tocsr	expandptr)upcast)
_cs_matrixc                   Z   \ rS rSrSrSS jr\R
                  R                  \l        S rSS jr	\R                  R                  \	l        SS jr
\R                  R                  \
l        S r\R                  R                  \l        S	 rS
 rS rS rS rS rS rS r\S 5       rSrg)	_csc_base   cscNc                     Ub  US:w  a  [        S5      eU R                  u  p4U R                  U R                  U R                  U R
                  4XC4US9$ )N)r   r   zvSparse arrays/matrices do not support an 'axes' parameter because swapping dimensions is the only logical permutation.copy)
ValueErrorshape_csr_containerdataindicesindptr)selfaxesr   MNs        D/var/www/html/venv/lib/python3.13/site-packages/scipy/sparse/_csc.py	transpose_csc_base.transpose   si     L M M zz""DIIt||$(KK$134&t # E 	E    c              #   @   #    U R                  5        S h  vN   g  N7fN)tocsr)r   s    r   __iter___csc_base.__iter__!   s     ::<s   c                 4    U(       a  U R                  5       $ U $ r$   r   )r   r   s     r   tocsc_csc_base.tocsc$   s    99;Kr"   c           
      J   U R                   u  p#U R                  U R                  U R                  4[	        U R
                  U5      S9n[        R                  " US-   US9n[        R                  " U R
                  US9n[        R                  " U R
                  [        U R                  5      S9n[        X#U R                  R                  U5      U R                  R                  U5      U R                  UUU5        U R                  XvU4U R                   SS9nSUl        U$ )N)maxvalr   dtypeF)r   r   T)r   _get_index_dtyper   r   maxnnznpemptyr   r.   r
   astyper   r   has_sorted_indices)	r   r   r   r   	idx_dtyper   r   r   As	            r   r%   _csc_base.tocsr,   s    jj))4;;*E+.txx+; * =	!a%y1((48895xxtzz(:;!++$$Y/,,%%i0))	 F#**5   
  $r"   c                 z   U R                  U R                  5      u  pU R                  n[        R                  " [        U5      U R                  R                  S9n[        XR                  U5        U R                  XC45      u  pVU R                  S:g  nXW   nXg   n[        R                  " USS9nXX   nXh   nXV4$ )Nr-   r   	mergesort)kind)_swapr   r   r2   r3   lenr.   r   r   r   argsort)	r   	major_dim	minor_dimminor_indicesmajor_indicesrowcolnz_maskinds	            r   nonzero_csc_base.nonzeroE   s    
  $zz$**5	]!34<<;M;MN)[[-8::}<= ))q.ll jj;/hhxr"   c                     U R                   u  p#[        U5      nUS:  a  X-  nUS:  d  X:  a  [        SU-  5      eU R                  US9R	                  5       $ )zMReturns a copy of row i of the matrix, as a (1 x n)
CSR matrix (row vector).
r   index (%d) out of rangeminor)r   int
IndexError_get_submatrixr%   r   ir   r   s       r   _getrow_csc_base._getrow^   s_     zzFq5FAq5AF6:;;"""+1133r"   c                     U R                   u  p#[        U5      nUS:  a  X-  nUS:  d  X:  a  [        SU-  5      eU R                  USS9$ )zSReturns a copy of column i of the matrix, as a (m x 1)
CSC matrix (column vector).
r   rJ   T)majorr   )r   rM   rN   rO   rP   s       r   _getcol_csc_base._getcolj   sX     zzFq5FAq5AF6:;;"""66r"   c                 >    U R                  U5      R                  US9$ )NrK   )_major_index_fancyrO   r   rC   rD   s      r   _get_intXarray_csc_base._get_intXarrayv   s!    &&s+:::EEr"   c                 ~    UR                   S;   a  U R                  X!SS9$ U R                  U5      R                  US9$ )Nr   NTrU   rL   r   rK   )steprO   _major_slicerZ   s      r   _get_intXslice_csc_base._get_intXslicey   sC    88y &&S$&GG  %4434??r"   c                 ~    UR                   S;   a  U R                  X!SS9$ U R                  US9R                  U5      $ )Nr^   Tr_   rU   )r`   rO   _minor_slicerZ   s      r   _get_sliceXint_csc_base._get_sliceXint~   sC    88y &&S$&GG"""-::3??r"   c                 B    U R                  U5      R                  U5      $ r$   )rY   rf   rZ   s      r   _get_sliceXarray_csc_base._get_sliceXarray   s    &&s+88==r"   c                     U R                  US9R                  U5      nUR                  S:  a  UR                  UR                  5      $ U$ )Nre   r   )rO   _minor_index_fancyndimreshaper   )r   rC   rD   ress       r   _get_arrayXint_csc_base._get_arrayXint   sC    !!!,??D88a<;;syy))
r"   c                 B    U R                  U5      R                  U5      $ r$   )ra   rm   rZ   s      r   _get_arrayXslice_csc_base._get_arrayXslice   s      %88==r"   c                     U S   U S   4$ )zBswap the members of x if this is a column-oriented matrix
        r   r    xs    r   r<   _csc_base._swap   s     tQqTzr"   rw   )NF)F)__name__
__module____qualname____firstlineno___formatr    r   __doc__r&   r)   r%   rG   r   rR   rV   r[   rb   rg   rj   rq   rt   staticmethodr<   __static_attributes__rw   r"   r   r   r      s    G	E  ))11I  MM))EM. MM))EM. !((00GO
4
7F@
@
>>
  r"   r   c                 "    [        U [        5      $ )a  Is `x` of csc_matrix type?

Parameters
----------
x
    object to check for being a csc matrix

Returns
-------
bool
    True if `x` is a csc matrix, False otherwise

Examples
--------
>>> from scipy.sparse import csc_array, csc_matrix, coo_matrix, isspmatrix_csc
>>> isspmatrix_csc(csc_matrix([[5]]))
True
>>> isspmatrix_csc(csc_array([[5]]))
False
>>> isspmatrix_csc(coo_matrix([[5]]))
False
)
isinstancer   rx   s    r   r   r      s    . a$$r"   c                       \ rS rSrSrSrg)r      a 
  
Compressed Sparse Column array.

This can be instantiated in several ways:
    csc_array(D)
        where D is a 2-D ndarray

    csc_array(S)
        with another sparse array or matrix S (equivalent to S.tocsc())

    csc_array((M, N), [dtype])
        to construct an empty array with shape (M, N)
        dtype is optional, defaulting to dtype='d'.

    csc_array((data, (row_ind, col_ind)), [shape=(M, N)])
        where ``data``, ``row_ind`` and ``col_ind`` satisfy the
        relationship ``a[row_ind[k], col_ind[k]] = data[k]``.

    csc_array((data, indices, indptr), [shape=(M, N)])
        is the standard CSC representation where the row indices for
        column i are stored in ``indices[indptr[i]:indptr[i+1]]``
        and their corresponding values are stored in
        ``data[indptr[i]:indptr[i+1]]``.  If the shape parameter is
        not supplied, the array dimensions are inferred from
        the index arrays.

Attributes
----------
dtype : dtype
    Data type of the array
shape : 2-tuple
    Shape of the array
ndim : int
    Number of dimensions (this is always 2)
nnz
size
data
    CSC format data array of the array
indices
    CSC format index array of the array
indptr
    CSC format index pointer array of the array
has_sorted_indices
has_canonical_format
T

Notes
-----

Sparse arrays can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.

Advantages of the CSC format
    - efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
    - efficient column slicing
    - fast matrix vector products (CSR, BSR may be faster)

Disadvantages of the CSC format
  - slow row slicing operations (consider CSR)
  - changes to the sparsity structure are expensive (consider LIL or DOK)

Canonical format
  - Within each column, indices are sorted by row.
  - There are no duplicate entries.

Examples
--------

>>> import numpy as np
>>> from scipy.sparse import csc_array
>>> csc_array((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 2, 2, 0, 1, 2])
>>> col = np.array([0, 0, 1, 2, 2, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_array((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 4],
       [0, 0, 5],
       [2, 3, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_array((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 4],
       [0, 0, 5],
       [2, 3, 6]])

rw   Nr{   r|   r}   r~   r   r   rw   r"   r   r   r          [r"   r   c                       \ rS rSrSrSrg)r   i  a
  
Compressed Sparse Column matrix.

This can be instantiated in several ways:
    csc_matrix(D)
        where D is a 2-D ndarray

    csc_matrix(S)
        with another sparse array or matrix S (equivalent to S.tocsc())

    csc_matrix((M, N), [dtype])
        to construct an empty matrix with shape (M, N)
        dtype is optional, defaulting to dtype='d'.

    csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
        where ``data``, ``row_ind`` and ``col_ind`` satisfy the
        relationship ``a[row_ind[k], col_ind[k]] = data[k]``.

    csc_matrix((data, indices, indptr), [shape=(M, N)])
        is the standard CSC representation where the row indices for
        column i are stored in ``indices[indptr[i]:indptr[i+1]]``
        and their corresponding values are stored in
        ``data[indptr[i]:indptr[i+1]]``.  If the shape parameter is
        not supplied, the matrix dimensions are inferred from
        the index arrays.

Attributes
----------
dtype : dtype
    Data type of the matrix
shape : 2-tuple
    Shape of the matrix
ndim : int
    Number of dimensions (this is always 2)
nnz
size
data
    CSC format data array of the matrix
indices
    CSC format index array of the matrix
indptr
    CSC format index pointer array of the matrix
has_sorted_indices
has_canonical_format
T

Notes
-----

Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.

Advantages of the CSC format
    - efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
    - efficient column slicing
    - fast matrix vector products (CSR, BSR may be faster)

Disadvantages of the CSC format
  - slow row slicing operations (consider CSR)
  - changes to the sparsity structure are expensive (consider LIL or DOK)

Canonical format
  - Within each column, indices are sorted by row.
  - There are no duplicate entries.

Examples
--------

>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> csc_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 2, 2, 0, 1, 2])
>>> col = np.array([0, 0, 1, 2, 2, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 4],
       [0, 0, 5],
       [2, 3, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 4],
       [0, 0, 5],
       [2, 3, 6]])

rw   Nr   rw   r"   r   r   r     r   r"   r   )r   __docformat____all__numpyr2   _matrixr   _baser   r	   _sparsetoolsr
   r   _sputilsr   _compressedr   r   r   r   r   rw   r"   r   <module>r      s[    ,%
7   # .  #D
 DN%6\	7 \~\9 \r"   