
    (phqB                     B   S r SSKJr  SSKJrJrJrJr  SSK	J
r
  SSKJr  SSKJr  SSKJrJrJr  S	/rSrSrS
rSrSr\\-   \-   \-   r\S\S\S\S\S\S0rSrSrSrS
rSr Sr!Sr"Sr#Sr$\S\S\S\S\ S\!S\"S\#S\$S 0	r%S!S"SS!S#S!S!\SS!SSSSSSSSS!S!4S$ jr&     S&S% jr'g!)'a  
TNC: A Python interface to the TNC non-linear optimizer

TNC is a non-linear optimizer. To use it, you must provide a function to
minimize. The function must take one argument: the list of coordinates where to
evaluate the function; and it must return either a tuple, whose first element is the
value of the function, and whose second argument is the gradient of the function
(as a list of values); or None, to abort the minimization.
    )
_moduleTNC   )
MemoizeJacOptimizeResult_check_unknown_options_prepare_scalar_function)old_bound_to_new)array_namespace)array_api_extra)infarrayzerosfmin_tnc         zNo messageszOne line per iterationzInformational messageszVersion infozExit reasonszAll messages            z&Infeasible (lower bound > upper bound)z!Local minimum reached (|pg| ~= 0)zConverged (|f_n-f_(n-1)| ~= 0)zConverged (|x_n-x_(n-1)| ~= 0)z+Max. number of function evaluations reachedzLinear search failedz.All lower bounds are equal to the upper boundszUnable to progressz"User requested end of minimizationN :0yE>c                 0   U(       a  U nSnOUc  [        U 5      nUR                  nOU nUnUb  UnO5[        [        [        [
        [        [        S.R                  U	[        5      nUUUUU
UUUUUUUUUSS.n[        UXUU4SU0UD6nUS   US   US   4$ )	a  
Minimize a function with variables subject to bounds, using
gradient information in a truncated Newton algorithm. This
method wraps a C implementation of the algorithm.

Parameters
----------
func : callable ``func(x, *args)``
    Function to minimize.  Must do one of:

    1. Return f and g, where f is the value of the function and g its
       gradient (a list of floats).

    2. Return the function value but supply gradient function
       separately as `fprime`.

    3. Return the function value and set ``approx_grad=True``.

    If the function returns None, the minimization
    is aborted.
x0 : array_like
    Initial estimate of minimum.
fprime : callable ``fprime(x, *args)``, optional
    Gradient of `func`. If None, then either `func` must return the
    function value and the gradient (``f,g = func(x, *args)``)
    or `approx_grad` must be True.
args : tuple, optional
    Arguments to pass to function.
approx_grad : bool, optional
    If true, approximate the gradient numerically.
bounds : list, optional
    (min, max) pairs for each element in x0, defining the
    bounds on that parameter. Use None or +/-inf for one of
    min or max when there is no bound in that direction.
epsilon : float, optional
    Used if approx_grad is True. The stepsize in a finite
    difference approximation for fprime.
scale : array_like, optional
    Scaling factors to apply to each variable. If None, the
    factors are up-low for interval bounded variables and
    1+|x| for the others. Defaults to None.
offset : array_like, optional
    Value to subtract from each variable. If None, the
    offsets are (up+low)/2 for interval bounded variables
    and x for the others.
messages : int, optional
    Bit mask used to select messages display during
    minimization values defined in the MSGS dict. Defaults to
    MGS_ALL.
disp : int, optional
    Integer interface to messages. 0 = no message, 5 = all messages
maxCGit : int, optional
    Maximum number of hessian*vector evaluations per main
    iteration. If maxCGit == 0, the direction chosen is
    -gradient if maxCGit < 0, maxCGit is set to
    max(1,min(50,n/2)). Defaults to -1.
maxfun : int, optional
    Maximum number of function evaluation. If None, maxfun is
    set to max(100, 10*len(x0)). Defaults to None. Note that this function
    may violate the limit because of evaluating gradients by numerical
    differentiation.
eta : float, optional
    Severity of the line search. If < 0 or > 1, set to 0.25.
    Defaults to -1.
stepmx : float, optional
    Maximum step for the line search. May be increased during
    call. If too small, it will be set to 10.0. Defaults to 0.
accuracy : float, optional
    Relative precision for finite difference calculations. If
    <= machine_precision, set to sqrt(machine_precision).
    Defaults to 0.
fmin : float, optional
    Minimum function value estimate. Defaults to 0.
ftol : float, optional
    Precision goal for the value of f in the stopping criterion.
    If ftol < 0.0, ftol is set to 0.0 defaults to -1.
xtol : float, optional
    Precision goal for the value of x in the stopping
    criterion (after applying x scaling factors). If xtol <
    0.0, xtol is set to sqrt(machine_precision). Defaults to
    -1.
pgtol : float, optional
    Precision goal for the value of the projected gradient in
    the stopping criterion (after applying x scaling factors).
    If pgtol < 0.0, pgtol is set to 1e-2 * sqrt(accuracy).
    Setting it to 0.0 is not recommended. Defaults to -1.
rescale : float, optional
    Scaling factor (in log10) used to trigger f value
    rescaling. If 0, rescale at each iteration. If a large
    value, never rescale. If < 0, rescale is set to 1.3.
callback : callable, optional
    Called after each iteration, as callback(xk), where xk is the
    current parameter vector.

Returns
-------
x : ndarray
    The solution.
nfeval : int
    The number of function evaluations.
rc : int
    Return code, see below

See also
--------
minimize: Interface to minimization algorithms for multivariate
    functions. See the 'TNC' `method` in particular.

Notes
-----
The underlying algorithm is truncated Newton, also called
Newton Conjugate-Gradient. This method differs from
scipy.optimize.fmin_ncg in that

1. it wraps a C implementation of the algorithm
2. it allows each variable to be given an upper and lower bound.

The algorithm incorporates the bound constraints by determining
the descent direction as in an unconstrained truncated Newton,
but never taking a step-size large enough to leave the space
of feasible x's. The algorithm keeps track of a set of
currently active constraints, and ignores them when computing
the minimum allowable step size. (The x's associated with the
active constraint are kept fixed.) If the maximum allowable
step size is zero then a new constraint is added. At the end
of each iteration one of the constraints may be deemed no
longer active and removed. A constraint is considered
no longer active is if it is currently active
but the gradient for that variable points inward from the
constraint. The specific constraint removed is the one
associated with the variable of largest index whose
constraint is no longer active.

Return codes are defined as follows:

- ``-1`` : Infeasible (lower bound > upper bound)
- ``0`` : Local minimum reached (:math:`|pg| \approx 0`)
- ``1`` : Converged (:math:`|f_n-f_(n-1)| \approx 0`)
- ``2`` : Converged (:math:`|x_n-x_(n-1)| \approx 0`)
- ``3`` : Max. number of function evaluations reached
- ``4`` : Linear search failed
- ``5`` : All lower bounds are equal to the upper bounds
- ``6`` : Unable to progress
- ``7`` : User requested end of minimization

References
----------
Wright S., Nocedal J. (2006), 'Numerical Optimization'

Nash S.G. (1984), "Newton-Type Minimization Via the Lanczos Method",
SIAM Journal of Numerical Analysis 21, pp. 770-778

Nr   r   r   r   r   r   F)epsscaleoffsetmesg_nummaxCGitmaxfunetastepmxaccuracyminfevftolxtolgtolrescaledispcallbackxnfevstatus)
r   
derivativeMSG_NONEMSG_ITERMSG_INFOMSG_VERSMSG_EXITMSG_ALLget_minimize_tnc)funcx0fprimeargsapprox_gradboundsepsilonr   r   messagesr    r!   r"   r#   r$   fminr&   r'   pgtolr)   r*   r+   funjacr   optsress                              F/var/www/html/venv/lib/python3.13/site-packages/scipy/optimize/_tnc.pyr   r   Y   s    ~ 	nn(h('++.3x+A 	   D  RsF
NX
N
NCs8S[#h-//    c                    [        U5        UnUn[        U5      n[        R                  " UR	                  U5      SUS9nUR
                  nUR                  UR                  S5      (       a  UR                  nUR                  UR                  UU5      S5      n[        U5      nUc  S/U-  n[        U5      U:w  a  [        S5      e[        U5      nUb6  [        [        [        [         ["        [$        S.R'                  U[$        5      nOU(       a  [$        nO[        n[)        XX2UUUS9nUR*                  n [-        U5      n [-        U5      n![/        U5       HF  n"UU"   c  [0        * [0        n$n#M  UU"   u  n#n$U#c  [0        * U U"'   OU#U U"'   U$c  [0        U!U"'   MA  U$U!U"'   MH     Uc  [3        / 5      nUc  [3        / 5      nUc  [5        S	S
[        U5      -  5      n[6        R8                  " UUU U!UUUU	UXUUUUUUU5      u  n%n&n'n(n)n*U" U(5      u  n)n*[;        U(U)U*UR<                  U'U%[>        U%   SU%s=:  =(       a    S:  S9$ s  S9$ )a\
  
Minimize a scalar function of one or more variables using a truncated
Newton (TNC) algorithm.

Options
-------
eps : float or ndarray
    If `jac is None` the absolute step size used for numerical
    approximation of the jacobian via forward differences.
scale : list of floats
    Scaling factors to apply to each variable. If None, the
    factors are up-low for interval bounded variables and
    1+|x] for the others. Defaults to None.
offset : float
    Value to subtract from each variable. If None, the
    offsets are (up+low)/2 for interval bounded variables
    and x for the others.
disp : bool
   Set to True to print convergence messages.
maxCGit : int
    Maximum number of hessian*vector evaluations per main
    iteration. If maxCGit == 0, the direction chosen is
    -gradient if maxCGit < 0, maxCGit is set to
    max(1,min(50,n/2)). Defaults to -1.
eta : float
    Severity of the line search. If < 0 or > 1, set to 0.25.
    Defaults to -1.
stepmx : float
    Maximum step for the line search. May be increased during
    call. If too small, it will be set to 10.0. Defaults to 0.
accuracy : float
    Relative precision for finite difference calculations. If
    <= machine_precision, set to sqrt(machine_precision).
    Defaults to 0.
minfev : float
    Minimum function value estimate. Defaults to 0.
ftol : float
    Precision goal for the value of f in the stopping criterion.
    If ftol < 0.0, ftol is set to 0.0 defaults to -1.
xtol : float
    Precision goal for the value of x in the stopping
    criterion (after applying x scaling factors). If xtol <
    0.0, xtol is set to sqrt(machine_precision). Defaults to
    -1.
gtol : float
    Precision goal for the value of the projected gradient in
    the stopping criterion (after applying x scaling factors).
    If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy).
    Setting it to 0.0 is not recommended. Defaults to -1.
rescale : float
    Scaling factor (in log10) used to trigger f value
    rescaling.  If 0, rescale at each iteration.  If a large
    value, never rescale.  If < 0, rescale is set to 1.3.
finite_diff_rel_step : None or array_like, optional
    If ``jac in ['2-point', '3-point', 'cs']`` the relative step size to
    use for numerical approximation of the jacobian. The absolute step
    size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``,
    possibly adjusted to fit into the bounds. For ``method='3-point'``
    the sign of `h` is ignored. If None (default) then step is selected
    automatically.
maxfun : int
    Maximum number of function evaluations. If None, `maxfun` is
    set to max(100, 10*len(x0)). Defaults to None.
r   )ndimxpzreal floatingr   )NNz length of x0 != length of boundsr   )rC   r;   r>   finite_diff_rel_stepr=   d   
   r   )r,   rB   rC   r-   nitr.   messagesuccess) r   r
   xpx
atleast_ndasarrayfloat64isdtypedtypereshapeastypelen
ValueErrorr	   r0   r1   r2   r3   r4   r5   r6   r   fun_and_gradr   ranger   r   max	moduleTNCtnc_minimizer   r-   	RCSTRINGS)+rB   r9   r;   rC   r=   r   r   r   r   r    r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   rK   r!   unknown_optionsr@   rA   rJ   rV   n
new_boundsr?   sffunc_and_gradlowupilurcnfrN   r,   funvjacvs+                                              rF   r7   r7     sT   L ?+DE		B	

2Q2	6BJJE	zz"((O,,	BIIb%("	-BBA~"
6{a;<<!&)J(h('++.3x+A 			!#ss7K)3
5B OOM (C	qB1X!94qAq)CAayAAy11  }b	~r~S"SW*%!*!7!7r3E'6XtTeWh	"BCD$ q!JD$A4T!"im#%;;Q;1 1#.1 1rG   )r   NNr   NNNr   r   r   r   r   r   r   r   r   FNNN)(__doc__scipy.optimizer   r^   	_optimizer   r   r   r   _constraintsr	   scipy._lib._array_apir
   
scipy._libr   rQ   numpyr   r   r   __all__r0   r1   r2   r3   r4   r5   MSGS
INFEASIBLELOCALMINIMUM
FCONVERGED
XCONVERGEDMAXFUNLSFAILCONSTANT
NOPROGRESS	USERABORTr`   r   r7   r   rG   rF   <module>r      sB  2 31 1 * 1 - # #, 
X

(8
3 	-**.. 


	
	

	 	<944=&B(7
	  #$d4r$B2dT	A0H 6:>B9:HMCG	R1rG   