
    (ph                     ,    S r SSKrSSKJr  S/rSS jrg)z+
Solve the orthogonal Procrustes problem.

    N   )svdorthogonal_procrustesc                 2   U(       a-  [         R                  " U 5      n [         R                  " U5      nO,[         R                  " U 5      n [         R                  " U5      nU R                  S:w  a  [	        SU R                   35      eU R
                  UR
                  :w  a&  [	        SU R
                   SUR
                   S35      e[        UR                  [         R                  " U 5      -  R                  5      u  p4nX5-  nUR                  5       nXg4$ )am	  
Compute the matrix solution of the orthogonal (or unitary) Procrustes problem.

Given matrices `A` and `B` of the same shape, find an orthogonal (or unitary in
the case of complex input) matrix `R` that most closely maps `A` to `B` using the
algorithm given in [1]_.

Parameters
----------
A : (M, N) array_like
    Matrix to be mapped.
B : (M, N) array_like
    Target matrix.
check_finite : bool, optional
    Whether to check that the input matrices contain only finite numbers.
    Disabling may give a performance gain, but may result in problems
    (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns
-------
R : (N, N) ndarray
    The matrix solution of the orthogonal Procrustes problem.
    Minimizes the Frobenius norm of ``(A @ R) - B``, subject to
    ``R.conj().T @ R = I``.
scale : float
    Sum of the singular values of ``A.conj().T @ B``.

Raises
------
ValueError
    If the input array shapes don't match or if check_finite is True and
    the arrays contain Inf or NaN.

Notes
-----
Note that unlike higher level Procrustes analyses of spatial data, this
function only uses orthogonal transformations like rotations and
reflections, and it does not use scaling or translation.

.. versionadded:: 0.15.0

References
----------
.. [1] Peter H. Schonemann, "A generalized solution of the orthogonal
       Procrustes problem", Psychometrica -- Vol. 31, No. 1, March, 1966.
       :doi:`10.1007/BF02289451`

Examples
--------
>>> import numpy as np
>>> from scipy.linalg import orthogonal_procrustes
>>> A = np.array([[ 2,  0,  1], [-2,  0,  0]])

Flip the order of columns and check for the anti-diagonal mapping

>>> R, sca = orthogonal_procrustes(A, np.fliplr(A))
>>> R
array([[-5.34384992e-17,  0.00000000e+00,  1.00000000e+00],
       [ 0.00000000e+00,  1.00000000e+00,  0.00000000e+00],
       [ 1.00000000e+00,  0.00000000e+00, -7.85941422e-17]])
>>> sca
9.0

As an example of the unitary Procrustes problem, generate a
random complex matrix ``A``, a random unitary matrix ``Q``,
and their product ``B``.

>>> shape = (4, 4)
>>> rng = np.random.default_rng(589234981235)
>>> A = rng.random(shape) + rng.random(shape)*1j
>>> Q = rng.random(shape) + rng.random(shape)*1j
>>> Q, _ = np.linalg.qr(Q)
>>> B = A @ Q

`orthogonal_procrustes` recovers the unitary matrix ``Q``
from ``A`` and ``B``.

>>> R, _ = orthogonal_procrustes(A, B)
>>> np.allclose(R, Q)
True

   z$expected ndim to be 2, but observed zthe shapes of A and B differ (z vs ))
npasarray_chkfinite
asanyarrayndim
ValueErrorshaper   T	conjugatesum)ABcheck_finiteuwvtRscales           K/var/www/html/venv/lib/python3.13/site-packages/scipy/linalg/_procrustes.pyr   r      s    f   #  #MM!MM!vv{?xHIIww!''9!''$qwwiqQRR ACC",,q/),,-HA"	AEEGE8O    )T)__doc__numpyr	   _decomp_svdr   __all__r    r   r   <module>r!      s"      #
#cr   