
    (ph                     ^    S SK rS SKJr  SSKJr  SSKJr  / SQr " S S\	5      r
SS	 jrS
 rg)    N)LinAlgError   )get_blas_funcs)get_lapack_funcs)r   LinAlgWarningnormc                       \ rS rSrSrSrg)r   	   z
The warning emitted when a linear algebra related operation is close
to fail conditions of the algorithm or loss of accuracy is expected.
 N)__name__
__module____qualname____firstlineno____doc____static_attributes__r       E/var/www/html/venv/lib/python3.13/site-packages/scipy/linalg/_misc.pyr   r   	   s     	r   r   c                 f   U(       a  [         R                  " U 5      n O[         R                  " U 5      n U R                  (       GaN  U R                  R
                  S;   Ga3  UGc/  U(       Gd'  US;   a-  U R                  S:X  a  [        SU R                  SS9nU" U 5      $ U R                  S:X  a  SnUS:X  aT  [         R                  " U 5      (       a  S	U 4nO[         R                  " U R                  5      (       a  S
U R                  4nOgU[         R                  :X  aS  [         R                  " U 5      (       a  S
U 4nO3[         R                  " U R                  5      (       a  S	U R                  4nU(       a  [        SU R                  SS9nU" U6 $ [         R                  R                  XX#S9$ )aL  
Matrix or vector norm.

This function is able to return one of eight different matrix norms,
or one of an infinite number of vector norms (described below), depending
on the value of the ``ord`` parameter. For tensors with rank different from
1 or 2, only `ord=None` is supported.

Parameters
----------
a : array_like
    Input array. If `axis` is None, `a` must be 1-D or 2-D, unless `ord`
    is None. If both `axis` and `ord` are None, the 2-norm of
    ``a.ravel`` will be returned.
ord : {int, inf, -inf, 'fro', 'nuc', None}, optional
    Order of the norm (see table under ``Notes``). inf means NumPy's
    `inf` object.
axis : {int, 2-tuple of ints, None}, optional
    If `axis` is an integer, it specifies the axis of `a` along which to
    compute the vector norms. If `axis` is a 2-tuple, it specifies the
    axes that hold 2-D matrices, and the matrix norms of these matrices
    are computed. If `axis` is None then either a vector norm (when `a`
    is 1-D) or a matrix norm (when `a` is 2-D) is returned.
keepdims : bool, optional
    If this is set to True, the axes which are normed over are left in the
    result as dimensions with size one. With this option the result will
    broadcast correctly against the original `a`.
check_finite : bool, optional
    Whether to check that the input matrix contains only finite numbers.
    Disabling may give a performance gain, but may result in problems
    (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns
-------
n : float or ndarray
    Norm of the matrix or vector(s).

Notes
-----
For values of ``ord <= 0``, the result is, strictly speaking, not a
mathematical 'norm', but it may still be useful for various numerical
purposes.

The following norms can be calculated:

=====  ============================  ==========================
ord    norm for matrices             norm for vectors
=====  ============================  ==========================
None   Frobenius norm                2-norm
'fro'  Frobenius norm                --
'nuc'  nuclear norm                  --
inf    max(sum(abs(a), axis=1))      max(abs(a))
-inf   min(sum(abs(a), axis=1))      min(abs(a))
0      --                            sum(a != 0)
1      max(sum(abs(a), axis=0))      as below
-1     min(sum(abs(a), axis=0))      as below
2      2-norm (largest sing. value)  as below
-2     smallest singular value       as below
other  --                            sum(abs(a)**ord)**(1./ord)
=====  ============================  ==========================

The Frobenius norm is given by [1]_:

    :math:`||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}`

The nuclear norm is the sum of the singular values.

Both the Frobenius and nuclear norm orders are only defined for
matrices.

References
----------
.. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
       Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15

Examples
--------
>>> import numpy as np
>>> from scipy.linalg import norm
>>> a = np.arange(9) - 4.0
>>> a
array([-4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])
>>> b = a.reshape((3, 3))
>>> b
array([[-4., -3., -2.],
       [-1.,  0.,  1.],
       [ 2.,  3.,  4.]])

>>> norm(a)
7.745966692414834
>>> norm(b)
7.745966692414834
>>> norm(b, 'fro')
7.745966692414834
>>> norm(a, np.inf)
4.0
>>> norm(b, np.inf)
9.0
>>> norm(a, -np.inf)
0.0
>>> norm(b, -np.inf)
2.0

>>> norm(a, 1)
20.0
>>> norm(b, 1)
7.0
>>> norm(a, -1)
-4.6566128774142013e-010
>>> norm(b, -1)
6.0
>>> norm(a, 2)
7.745966692414834
>>> norm(b, 2)
7.3484692283495345

>>> norm(a, -2)
0.0
>>> norm(b, -2)
1.8570331885190563e-016
>>> norm(a, 3)
5.8480354764257312
>>> norm(a, -3)
0.0

fdFDN)N   r   nrm2	preferred)dtypeilp64r   1ilange)ordaxiskeepdims)npasarray_chkfiniteasarraysizer   charndimr   	isfortranTinfr   linalgr   )ar   r   r    check_finiter   
lange_argsr   s           r   r   r      s<   @   #JJqMvvv!'',,&(T\()1!&{KD7N66Q; J ax<<??!$aJ\\!##&&!$accJ<<??!$aJ\\!##&&!$accJ({Sj)) 99>>!4>CCr   c                     XL a  g[        U[        R                  5      (       d  [        US5      (       a  gU R                  SL $ )zq
Strict check for `arr` not sharing any data with `original`,
under the assumption that arr = asarray(original)

F	__array__N)
isinstancer!   ndarrayhasattrbase)arroriginals     r   _datacopiedr6      s;     h

+++0N0N88tr   )NNFT)numpyr!   numpy.linalgr   blasr   lapackr   __all__RuntimeWarningr   r   r6   r   r   r   <module>r=      s/     $   $
2	N 	aDH
r   