
    (ph<                     \    S r SSKrSSKJr  SSKJr  / SQrS r  SS jr	  SS	 jr
SS
 jrg)zQR decomposition functions.    N   )get_lapack_funcs)_datacopied)qrqr_multiplyrqc                    UR                  SS5      nUS;   a?  SUS'   U " U0 UD6nUS   S   R                  R                  [        R                  5      US'   U " U0 UD6nUS   S:  a  [        SUS   * U4-  5      eUSS $ )zWCall a LAPACK routine, determining lwork automatically and handling
error return valueslworkN)Nr   r   z-illegal value in %dth argument of internal %s)getrealastypenpint_
ValueError)fnameargskwargsr
   rets         J/var/www/html/venv/lib/python3.13/site-packages/scipy/linalg/_decomp_qr.pysafecallr      s     JJw%E
w  b'!*//009w
T
V
C
2w{H WHd+, - 	-s8O    c           	         US;  a  [        S5      eU(       a  [        R                  " U 5      nO[        R                  " U 5      n[	        UR
                  5      S:w  a  [        S5      eUR
                  u  pxUR                  S:X  a  [        Xx5      n	US;  aF  [        R                  " XgU4S9n
[        R                  " U5      U
S'   [        R                  " U5      nO,[        R                  " XgU	4S9n
[        R                  " XiU4S9nU(       a&  U[        R                  " U[        R                  S	94nOU4nUS
:X  a  U$ US:X  a2  [        R                  " XgU4S9n[        R                  " Xi4S9nX44U-   $ U
4U-   $ U=(       d    [        X`5      nU(       a$  [        SU45      u  n[        USXaS9u  nnnUS-  nO[        SU45      u  n[        USXbUS9u  pUS;  d  Xx:  a  [        R                   " U5      nO[        R                   " USU2SS24   5      nU(       a  UW4nOU4nUS
:X  a  U$ US:X  a  X44U-   $ [        SU45      u  nXx:  a  [        USUSS2SU24   UUSS9u  n
O\US:X  a  [        USXUSS9u  n
OFUR"                  R$                  n[        R&                  " Xw4US	9nUUSS2SU24'   [        USUXSS9u  n
U
4U-   $ )a  
Compute QR decomposition of a matrix.

Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
and R upper triangular.

Parameters
----------
a : (M, N) array_like
    Matrix to be decomposed
overwrite_a : bool, optional
    Whether data in `a` is overwritten (may improve performance if
    `overwrite_a` is set to True by reusing the existing input data
    structure rather than creating a new one.)
lwork : int, optional
    Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
    is computed.
mode : {'full', 'r', 'economic', 'raw'}, optional
    Determines what information is to be returned: either both Q and R
    ('full', default), only R ('r') or both Q and R but computed in
    economy-size ('economic', see Notes). The final option 'raw'
    (added in SciPy 0.11) makes the function return two matrices
    (Q, TAU) in the internal format used by LAPACK.
pivoting : bool, optional
    Whether or not factorization should include pivoting for rank-revealing
    qr decomposition. If pivoting, compute the decomposition
    ``A[:, P] = Q @ R`` as above, but where P is chosen such that the
    diagonal of R is non-increasing. Equivalently, albeit less efficiently,
    an explicit P matrix may be formed explicitly by permuting the rows or columns
    (depending on the side of the equation on which it is to be used) of
    an identity matrix. See Examples.
check_finite : bool, optional
    Whether to check that the input matrix contains only finite numbers.
    Disabling may give a performance gain, but may result in problems
    (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns
-------
Q : float or complex ndarray
    Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned
    if ``mode='r'``. Replaced by tuple ``(Q, TAU)`` if ``mode='raw'``.
R : float or complex ndarray
    Of shape (M, N), or (K, N) for ``mode in ['economic', 'raw']``.
    ``K = min(M, N)``.
P : int ndarray
    Of shape (N,) for ``pivoting=True``. Not returned if
    ``pivoting=False``.

Raises
------
LinAlgError
    Raised if decomposition fails

Notes
-----
This is an interface to the LAPACK routines dgeqrf, zgeqrf,
dorgqr, zungqr, dgeqp3, and zgeqp3.

If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead
of (M,M) and (M,N), with ``K=min(M,N)``.

Examples
--------
>>> import numpy as np
>>> from scipy import linalg
>>> rng = np.random.default_rng()
>>> a = rng.standard_normal((9, 6))

>>> q, r = linalg.qr(a)
>>> np.allclose(a, np.dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))

>>> r2 = linalg.qr(a, mode='r')
>>> np.allclose(r, r2)
True

>>> q3, r3 = linalg.qr(a, mode='economic')
>>> q3.shape, r3.shape
((9, 6), (6, 6))

>>> q4, r4, p4 = linalg.qr(a, pivoting=True)
>>> d = np.abs(np.diag(r4))
>>> np.all(d[1:] <= d[:-1])
True
>>> np.allclose(a[:, p4], np.dot(q4, r4))
True
>>> P = np.eye(p4.size)[p4]
>>> np.allclose(a, np.dot(q4, r4) @ P)
True
>>> np.allclose(a @ P.T, np.dot(q4, r4))
True
>>> q4.shape, r4.shape, p4.shape
((9, 9), (9, 6), (6,))

>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
>>> q5.shape, r5.shape, p5.shape
((9, 6), (6, 6), (6,))
>>> P = np.eye(6)[:, p5]
>>> np.allclose(a @ P, np.dot(q5, r5))
True

)fullr   reconomicrawz?Mode argument should be one of ['full', 'r', 'economic', 'raw']   zexpected a 2-D arrayr   )r   r   shape.dtyper   r   )geqp3r%   )overwrite_ar   )geqrfr'   r
   r&   N)orgqrzgorgqr/gungqrr   )r   r   asarray_chkfiniteasarraylenr"   sizemin
empty_likeidentityarangeint32
zeros_liker   r   r   triur$   charempty)ar&   r
   modepivotingcheck_finitea1MNKQRRjr   taur%   jpvtr'   
gor_un_gqrtqqrs                        r   r   r      s   Z 99 . / 	/ !!!$ZZ]
288}/0088DA 
ww!|I**bA/A[[^AcFb!AbA/AbA/ABIIarxx00BB3;IU]rQ0B--$/CI<"$$tby5+b"4K!*re4 MD#	!*re45'2'24 &&!%GGBKGGBrr1uIWRs{			|b  ":u5KJuj/2a!e9c!q2		j/2%"#% HHMMhhvQ'ArrE
j/3"#% 4"9r   c                    US;  a  [        SU S35      e[        R                  " U5      nUR                  S:  a+  Sn[        R                  " U5      nUS:X  a  UR
                  nOSn[        R                  " [        R                  " U 5      5      n U R                  u  pUS:X  aJ  UR                  S   [        XXhU	-
  -  -   5      :w  a%  [        S	U R                   S
UR                   35      eO7XR                  S   :w  a%  [        SUR                   S
U R                   35      e[        XSSU5      n
U
S   u  pUR                  S:X  a  [        R                  " U5      4U
SS -   $ [        SU45      u  nUR                  S;   a  SnOSnUSS2S[        X5      24   nX:  a  US:X  a  U(       d  U(       aE  [        R                  " UR                  S   U4UR                  SS9nUR
                  USS2SU	24'   O:[        R                  " XR                  S   4UR                  SS9nXSU	2SS24'   SnU(       a  SnOSnSnOHUR                   S   (       a  US:X  d  U(       a  UR
                  nUS:X  a  SnOSnOSnUnUS:X  a  SnOSn[#        USUXXUS9u  nUS:w  a  UR
                  nUS:X  a  USS2S[        X5      24   nU(       a  UR%                  5       nU4U
SS -   $ )a  
Calculate the QR decomposition and multiply Q with a matrix.

Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
and R upper triangular. Multiply Q with a vector or a matrix c.

Parameters
----------
a : (M, N), array_like
    Input array
c : array_like
    Input array to be multiplied by ``q``.
mode : {'left', 'right'}, optional
    ``Q @ c`` is returned if mode is 'left', ``c @ Q`` is returned if
    mode is 'right'.
    The shape of c must be appropriate for the matrix multiplications,
    if mode is 'left', ``min(a.shape) == c.shape[0]``,
    if mode is 'right', ``a.shape[0] == c.shape[1]``.
pivoting : bool, optional
    Whether or not factorization should include pivoting for rank-revealing
    qr decomposition, see the documentation of qr.
conjugate : bool, optional
    Whether Q should be complex-conjugated. This might be faster
    than explicit conjugation.
overwrite_a : bool, optional
    Whether data in a is overwritten (may improve performance)
overwrite_c : bool, optional
    Whether data in c is overwritten (may improve performance).
    If this is used, c must be big enough to keep the result,
    i.e. ``c.shape[0]`` = ``a.shape[0]`` if mode is 'left'.

Returns
-------
CQ : ndarray
    The product of ``Q`` and ``c``.
R : (K, N), ndarray
    R array of the resulting QR factorization where ``K = min(M, N)``.
P : (N,) ndarray
    Integer pivot array. Only returned when ``pivoting=True``.

Raises
------
LinAlgError
    Raised if QR decomposition fails.

Notes
-----
This is an interface to the LAPACK routines ``?GEQRF``, ``?ORMQR``,
``?UNMQR``, and ``?GEQP3``.

.. versionadded:: 0.11.0

Examples
--------
>>> import numpy as np
>>> from scipy.linalg import qr_multiply, qr
>>> A = np.array([[1, 3, 3], [2, 3, 2], [2, 3, 3], [1, 3, 2]])
>>> qc, r1, piv1 = qr_multiply(A, 2*np.eye(4), pivoting=1)
>>> qc
array([[-1.,  1., -1.],
       [-1., -1.,  1.],
       [-1., -1., -1.],
       [-1.,  1.,  1.]])
>>> r1
array([[-6., -3., -5.            ],
       [ 0., -1., -1.11022302e-16],
       [ 0.,  0., -1.            ]])
>>> piv1
array([1, 0, 2], dtype=int32)
>>> q2, r2, piv2 = qr(A, mode='economic', pivoting=1)
>>> np.allclose(2*q2 - qc, np.zeros((4, 3)))
True

)leftrightz5Mode argument can only be 'left' or 'right' but not ''r    TrH   Fr   z5Array shapes are not compatible for Q @ c operation: z vs r   z5Array shapes are not compatible for c @ Q operation: Nr   )ormqr)sdTCF)r$   orderr=   r@   LC_CONTIGUOUSzgormqr/gunmqr)overwrite_crI   )r   r   r*   ndim
atleast_2drN   r+   r"   r.   r   r-   r/   r   typecodezerosr$   flagsr   ravel)r7   cr8   r9   	conjugater&   rT   onedimr<   r=   r   r?   rB   
gor_un_mqrtranscclrcQs                     r   r   r      s   X $$ !!%a) * 	*
QAvvzMM!6>A
bjjm$A77DAv~771:QK1$5 566 ,,-GG9D	C D D 7 
? ,,-GG9D	C D D QT5(
3CVFA 	vv{a "SW,,":t4KJj(	!Zc!iZ-Au1771:q/DBBq"1"uI1ggaj/DBrr1uIEBB	
	 Uc\YSS6>BB6>BB
:Ec*,CB|TTw:CI:XXZ53qr7?r   c           	         US;  a  [        S5      eU(       a  [        R                  " U 5      nO[        R                  " U 5      n[	        UR
                  5      S:w  a  [        S5      eUR
                  u  pgUR                  S:X  a  [        Xg5      nUS:X  dF  [        R                  " U5      n	[        R                  " XWU4S9n
[        R                  " U5      U
S'   O,[        R                  " XVU4S9n	[        R                  " XXU4S9n
US	:X  a  U	$ X4$ U=(       d    [        XP5      n[        S
U45      u  n[        USXRUS9u  pUS:X  a  Xv:  a  [        R                  " XU-
  5      n	O [        R                  " X* S2U* S24   5      n	US	:X  a  U	$ [        SU45      u  nXv:  a  [        USX* S XSS9u  n
X4$ US:X  a  [        USXUSS9u  n
X4$ [        R                  " Xw4UR                  S9nXU* S& [        USXUSS9u  n
X4$ )a  
Compute RQ decomposition of a matrix.

Calculate the decomposition ``A = R Q`` where Q is unitary/orthogonal
and R upper triangular.

Parameters
----------
a : (M, N) array_like
    Matrix to be decomposed
overwrite_a : bool, optional
    Whether data in a is overwritten (may improve performance)
lwork : int, optional
    Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
    is computed.
mode : {'full', 'r', 'economic'}, optional
    Determines what information is to be returned: either both Q and R
    ('full', default), only R ('r') or both Q and R but computed in
    economy-size ('economic', see Notes).
check_finite : bool, optional
    Whether to check that the input matrix contains only finite numbers.
    Disabling may give a performance gain, but may result in problems
    (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns
-------
R : float or complex ndarray
    Of shape (M, N) or (M, K) for ``mode='economic'``. ``K = min(M, N)``.
Q : float or complex ndarray
    Of shape (N, N) or (K, N) for ``mode='economic'``. Not returned
    if ``mode='r'``.

Raises
------
LinAlgError
    If decomposition fails.

Notes
-----
This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf,
sorgrq, dorgrq, cungrq and zungrq.

If ``mode=economic``, the shapes of Q and R are (K, N) and (M, K) instead
of (N,N) and (M,N), with ``K=min(M,N)``.

Examples
--------
>>> import numpy as np
>>> from scipy import linalg
>>> rng = np.random.default_rng()
>>> a = rng.standard_normal((6, 9))
>>> r, q = linalg.rq(a)
>>> np.allclose(a, r @ q)
True
>>> r.shape, q.shape
((6, 9), (9, 9))
>>> r2 = linalg.rq(a, mode='r')
>>> np.allclose(r, r2)
True
>>> r3, q3 = linalg.rq(a, mode='economic')
>>> r3.shape, q3.shape
((6, 6), (6, 9))

)r   r   r   z8Mode argument should be one of ['full', 'r', 'economic']r    zexpected matrixr   r   r!   .r   )gerqfrd   r(   N)orgrqzgorgrq/gungrqr   r#   )r   r   r*   r+   r,   r"   r-   r.   r/   r0   r   r   r   r4   r6   r$   )r7   r&   r
   r8   r:   r;   r<   r=   r>   r@   r?   rd   r   rB   
gor_un_grqrq1s                   r   r   r   q  s   B ,,KM 	M !!!$ZZ]
288}*++88DA 
ww!|Iz!b!AbA/A[[^AcFbA/AbA/A3;Ht5+b"4Kj2%0FEugr#.0GB:GGB!GGBrsQBCxL!s{":u5KJuj/2bc7C"#% 4K 
	j/2%"#% 4K hhvRXX.QBCj/35"#% 4Kr   )FNr   FT)rI   FFFF)FNr   T)__doc__numpyr   lapackr   _miscr   __all__r   r   r   r    r   r   <module>rn      sD    !  % 
% @E|~ ?D/4Upyr   