
    (phf              
           S r SSKJrJrJr  SSKJr  SSKr/ SQr	SSSSSSSSSS.	r
S rSS	 jrSS
 jrSS jrSS jrS rSS jrSS jrS rSS jrS rS rS rg)aK  Some simple financial calculations

patterned after spreadsheet computations.

There is some complexity in each function
so that the functions behave like ufuncs with
broadcasting and being able to be called with scalars
or arrays (or other sequences).

Functions support the :class:`decimal.Decimal` type unless
otherwise stated.
    )divisionabsolute_importprint_function)DecimalN)
fvpmtnperipmtppmtpvrateirrnpvmirr   )	endbeginebr   r   	beginningstartfinishc                     [        U [        R                  5      (       a  U $  [        U    $ ! [        [
        4 a#    U  Vs/ s H  n[        U   PM     Os  snf sns $ f = f)N)
isinstancenpndarray_when_to_numKeyError	TypeError)whenxs     M/var/www/html/venv/lib/python3.13/site-packages/numpy_financial/_financial.py_convert_whenr#      sW     $

##/D!!i  /)-.AQ../s   , A A	AAc                     [        U5      n[        [        R                  XX#U/5      u  pp#nSU -   U-  n[        R                  " U S:H  USX-  -   US-
  -  U -  5      nX5-  X&-  -   * $ )a	  
Compute the future value.

Given:
 * a present value, `pv`
 * an interest `rate` compounded once per period, of which
   there are
 * `nper` total
 * a (fixed) payment, `pmt`, paid either
 * at the beginning (`when` = {'begin', 1}) or the end
   (`when` = {'end', 0}) of each period

Return:
   the value at the end of the `nper` periods

Parameters
----------
rate : scalar or array_like of shape(M, )
    Rate of interest as decimal (not per cent) per period
nper : scalar or array_like of shape(M, )
    Number of compounding periods
pmt : scalar or array_like of shape(M, )
    Payment
pv : scalar or array_like of shape(M, )
    Present value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
    When payments are due ('begin' (1) or 'end' (0)).
    Defaults to {'end', 0}.

Returns
-------
out : ndarray
    Future values.  If all input is scalar, returns a scalar float.  If
    any input is array_like, returns future values for each input element.
    If multiple inputs are array_like, they all must have the same shape.

Notes
-----
The future value is computed by solving the equation::

 fv +
 pv*(1+rate)**nper +
 pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

or, when ``rate == 0``::

 fv + pv + pmt * nper == 0

References
----------
.. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
   Open Document Format for Office Applications (OpenDocument)v1.2,
   Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
   Pre-Draft 12. Organization for the Advancement of Structured Information
   Standards (OASIS). Billerica, MA, USA. [ODT Document].
   Available:
   http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
   OpenDocument-formula-20090508.odt

Examples
--------
>>> import numpy as np
>>> import numpy_financial as npf

What is the future value after 10 years of saving $100 now, with
an additional monthly savings of $100.  Assume the interest rate is
5% (annually) compounded monthly?

>>> npf.fv(0.05/12, 10*12, -100, -100)
15692.928894335748

By convention, the negative sign represents cash flow out (i.e. money not
available today).  Thus, saving $100 a month at 5% annual interest leads
to $15,692.93 available to spend in 10 years.

If any input is array_like, returns an array of equal shape.  Let's
compare different interest rates from the example above.

>>> a = np.array((0.05, 0.06, 0.07))/12
>>> npf.fv(a, 10*12, -100, -100)
array([ 15692.92889434,  16569.87435405,  17509.44688102]) # may vary

r   r   r#   mapr   asarraywhere)r   r	   r   r   r    tempfacts          r"   r   r   *   sy    h D"%bjj4s2M"NT$dFT>D88DAIt]TAX.t35DWsx      c                    [        U5      n[        [        R                  XX#U/5      u  pp#nSU -   U-  nU S:H  n[        R                  " USU 5      n[        R                  " US:g  USXt-  -   US-
  -  U-  5      nX2U-  -   * U-  $ )a	  
Compute the payment against loan principal plus interest.

Given:
 * a present value, `pv` (e.g., an amount borrowed)
 * a future value, `fv` (e.g., 0)
 * an interest `rate` compounded once per period, of which
   there are
 * `nper` total
 * and (optional) specification of whether payment is made
   at the beginning (`when` = {'begin', 1}) or the end
   (`when` = {'end', 0}) of each period

Return:
   the (fixed) periodic payment.

Parameters
----------
rate : array_like
    Rate of interest (per period)
nper : array_like
    Number of compounding periods
pv : array_like
    Present value
fv : array_like,  optional
    Future value (default = 0)
when : {{'begin', 1}, {'end', 0}}, {string, int}
    When payments are due ('begin' (1) or 'end' (0))

Returns
-------
out : ndarray
    Payment against loan plus interest.  If all input is scalar, returns a
    scalar float.  If any input is array_like, returns payment for each
    input element. If multiple inputs are array_like, they all must have
    the same shape.

Notes
-----
The payment is computed by solving the equation::

 fv +
 pv*(1 + rate)**nper +
 pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

or, when ``rate == 0``::

  fv + pv + pmt * nper == 0

for ``pmt``.

Note that computing a monthly mortgage payment is only
one use for this function.  For example, pmt returns the
periodic deposit one must make to achieve a specified
future balance given an initial deposit, a fixed,
periodically compounded interest rate, and the total
number of periods.

References
----------
.. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
   Open Document Format for Office Applications (OpenDocument)v1.2,
   Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
   Pre-Draft 12. Organization for the Advancement of Structured Information
   Standards (OASIS). Billerica, MA, USA. [ODT Document].
   Available:
   http://www.oasis-open.org/committees/documents.php
   ?wg_abbrev=office-formulaOpenDocument-formula-20090508.odt

Examples
--------
>>> import numpy_financial as npf

What is the monthly payment needed to pay off a $200,000 loan in 15
years at an annual interest rate of 7.5%?

>>> npf.pmt(0.075/12, 12*15, 200000)
-1854.0247200054619

In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained
today, a monthly payment of $1,854.02 would be required.  Note that this
example illustrates usage of `fv` having a default value of 0.

r   r   )r#   r&   r   arrayr(   )	r   r	   r   r   r    r)   maskmasked_rater*   s	            r"   r   r      s    j D!$RXXBD/I!JTHtDAID((4D)K88DAIt))D1H5kACDT'\?T!!r+   c                    [        U5      n[        [        R                  XX#U/5      u  pp#nSn[        R                  " SS9    USX-  -   -  U -  nSSS5        U(       a	  U* U-   U-  $ X2-   * US-   -  n[        R                  " U* W-   X&-   -  5      [        R                  " SU -   5      -  n[        R                  " U S:H  Xx5      $ ! [
         a    Sn Nf = f! , (       d  f       N= f)aR  
Compute the number of periodic payments.

:class:`decimal.Decimal` type is not supported.

Parameters
----------
rate : array_like
    Rate of interest (per period)
pmt : array_like
    Payment
pv : array_like
    Present value
fv : array_like, optional
    Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
    When payments are due ('begin' (1) or 'end' (0))

Notes
-----
The number of periods ``nper`` is computed by solving the equation::

 fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0

but if ``rate = 0`` then::

 fv + pv + pmt*nper = 0

Examples
--------
>>> import numpy as np
>>> import numpy_financial as npf

If you only had $150/month to pay towards the loan, how long would it take
to pay-off a loan of $8,000 at 7% annual interest?

>>> print(np.round(npf.nper(0.07/12, -150, 8000), 5))
64.07335

So, over 64 months would be required to pay off the loan.

The same analysis could be done with several different interest rates
and/or payments and/or total amounts to produce an entire table.

>>> npf.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12,
...                     -150   : -99    : 50    ,
...                     8000   : 9001   : 1000]))
array([[[ 64.07334877,  74.06368256],
        [108.07548412, 127.99022654]],
       [[ 66.12443902,  76.87897353],
        [114.70165583, 137.90124779]]])

Fraise)divider   TNr   )r#   r&   r   r'   errstateFloatingPointErrorlogr(   )	r   r   r   r   r    use_zero_ratezABs	            r"   r	   r	      s    l D #BJJBD0I JTM	G	$	!Qty[!$&A 
% bCgJAFFRCEbd#$RVVAdF^3xx	1(( " 	! M	! 
%	$s*   CCCCCC
C(c                 \   [        U5      n[        R                  " XUX4U5      u  pp#pE[        XX4U5      n[	        XXcU5      U -  n [        R
                  " US:H  USU -   -  U5      n[        R
                  " [        R                  " US:H  US:H  5      SU5      nU$ ! [         a     U$ f = f)aL	  
Compute the interest portion of a payment.

Parameters
----------
rate : scalar or array_like of shape(M, )
    Rate of interest as decimal (not per cent) per period
per : scalar or array_like of shape(M, )
    Interest paid against the loan changes during the life or the loan.
    The `per` is the payment period to calculate the interest amount.
nper : scalar or array_like of shape(M, )
    Number of compounding periods
pv : scalar or array_like of shape(M, )
    Present value
fv : scalar or array_like of shape(M, ), optional
    Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
    When payments are due ('begin' (1) or 'end' (0)).
    Defaults to {'end', 0}.

Returns
-------
out : ndarray
    Interest portion of payment.  If all input is scalar, returns a scalar
    float.  If any input is array_like, returns interest payment for each
    input element. If multiple inputs are array_like, they all must have
    the same shape.

See Also
--------
ppmt, pmt, pv

Notes
-----
The total payment is made up of payment against principal plus interest.

``pmt = ppmt + ipmt``

Examples
--------
>>> import numpy as np
>>> import numpy_financial as npf

What is the amortization schedule for a 1 year loan of $2500 at
8.24% interest per year compounded monthly?

>>> principal = 2500.00

The 'per' variable represents the periods of the loan.  Remember that
financial equations start the period count at 1!

>>> per = np.arange(1*12) + 1
>>> ipmt = npf.ipmt(0.0824/12, per, 1*12, principal)
>>> ppmt = npf.ppmt(0.0824/12, per, 1*12, principal)

Each element of the sum of the 'ipmt' and 'ppmt' arrays should equal
'pmt'.

>>> pmt = npf.pmt(0.0824/12, 1*12, principal)
>>> np.allclose(ipmt + ppmt, pmt)
True

>>> fmt = '{0:2d} {1:8.2f} {2:8.2f} {3:8.2f}'
>>> for payment in per:
...     index = payment - 1
...     principal = principal + ppmt[index]
...     print(fmt.format(payment, ppmt[index], ipmt[index], principal))
 1  -200.58   -17.17  2299.42
 2  -201.96   -15.79  2097.46
 3  -203.35   -14.40  1894.11
 4  -204.74   -13.01  1689.37
 5  -206.15   -11.60  1483.22
 6  -207.56   -10.18  1275.66
 7  -208.99    -8.76  1066.67
 8  -210.42    -7.32   856.25
 9  -211.87    -5.88   644.38
10  -213.32    -4.42   431.05
11  -214.79    -2.96   216.26
12  -216.26    -1.49    -0.00

>>> interestpd = np.sum(ipmt)
>>> np.round(interestpd, 2)
-112.98

r   r   )r#   r   broadcast_arraysr   _rblr(   logical_and
IndexError)r   perr	   r   r   r    	total_pmtr
   s           r"   r
   r
   -  s    l D$&$7$748:%F!DtD-I9$/4Dxx	4T?D9xxtqy#(;QE K  Ks   AB 
B+*B+c                 "    [        XS-
  X#U5      $ )a  
This function is here to simply have a different name for the 'fv'
function to not interfere with the 'fv' keyword argument within the 'ipmt'
function.  It is the 'remaining balance on loan' which might be useful as
it's own function, but is easily calculated with the 'fv' function.
r   )r   )r   r?   r   r   r    s        r"   r<   r<     s     d1Ws--r+   c           	      <    [        XX4U5      nU[        XX#XE5      -
  $ )a  
Compute the payment against loan principal.

Parameters
----------
rate : array_like
    Rate of interest (per period)
per : array_like, int
    Amount paid against the loan changes.  The `per` is the period of
    interest.
nper : array_like
    Number of compounding periods
pv : array_like
    Present value
fv : array_like, optional
    Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
    When payments are due ('begin' (1) or 'end' (0))

See Also
--------
pmt, pv, ipmt

)r   r
   )r   r?   r	   r   r   r    totals          r"   r   r     s&    2 BD)E44R666r+   c                     [        U5      n[        [        R                  XX#U/5      u  pp#nSU -   U-  n[        R                  " U S:H  USX-  -   US-
  -  U -  5      nX2U-  -   * U-  $ )a	  
Compute the present value.

Given:
 * a future value, `fv`
 * an interest `rate` compounded once per period, of which
   there are
 * `nper` total
 * a (fixed) payment, `pmt`, paid either
 * at the beginning (`when` = {'begin', 1}) or the end
   (`when` = {'end', 0}) of each period

Return:
   the value now

Parameters
----------
rate : array_like
    Rate of interest (per period)
nper : array_like
    Number of compounding periods
pmt : array_like
    Payment
fv : array_like, optional
    Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
    When payments are due ('begin' (1) or 'end' (0))

Returns
-------
out : ndarray, float
    Present value of a series of payments or investments.

Notes
-----
The present value is computed by solving the equation::

 fv +
 pv*(1 + rate)**nper +
 pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0

or, when ``rate = 0``::

 fv + pv + pmt * nper = 0

for `pv`, which is then returned.

References
----------
.. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
   Open Document Format for Office Applications (OpenDocument)v1.2,
   Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
   Pre-Draft 12. Organization for the Advancement of Structured Information
   Standards (OASIS). Billerica, MA, USA. [ODT Document].
   Available:
   http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
   OpenDocument-formula-20090508.odt

Examples
--------
>>> import numpy as np
>>> import numpy_financial as npf

What is the present value (e.g., the initial investment)
of an investment that needs to total $15692.93
after 10 years of saving $100 every month?  Assume the
interest rate is 5% (annually) compounded monthly.

>>> npf.pv(0.05/12, 10*12, -100, 15692.93)
-100.00067131625819

By convention, the negative sign represents cash flow out
(i.e., money not available today).  Thus, to end up with
$15,692.93 in 10 years saving $100 a month at 5% annual
interest, one's initial deposit should also be $100.

If any input is array_like, ``pv`` returns an array of equal shape.
Let's compare different interest rates in the example above:

>>> a = np.array((0.05, 0.04, 0.03))/12
>>> npf.pv(a, 10*12, -100, 15692.93)
array([ -100.00067132,  -649.26771385, -1273.78633713]) # may vary

So, to end up with the same $15692.93 under the same $100 per month
"savings plan," for annual interest rates of 4% and 3%, one would
need initial investments of $649.27 and $1273.79, respectively.

r   r   r%   )r   r	   r   r   r    r)   r*   s          r"   r   r     sx    r D"%bjj4s2M"NT$dFT>D88DAIta	kDF%;D%@ADd(]D  r+   c                     U S-   U-  nU S-   US-
  -  nXFU-  -   X&S-
  -  X-  S-   -  U -  -   nX-  U-  X&S-
  -  X-  S-   -  U S-  -  -
  X-  U-  X-  S-   -  U -  -   X&S-
  -  U-  U -  -   n	X-  $ )Nr       )
rnpr!   ywt1t2ggps
             r"   	_g_div_gprQ     s     A#B
A#1B	qD11f:q)A--A
$q&AvJ!#'"ad+,CFacAg"# AvJN1B 6Mr+   c           	         [        U5      n[        U[        5      (       a  [        O[        nUc  U" S5      nUc  U" S5      n[	        [
        R                  XX#U/5      u  pp#nUn	Sn
SnX:  aQ  U(       dJ  U	[        XXX45      -
  n[        X-
  5      n[
        R                  " X:  5      nU
S-  n
Un	X:  a	  U(       d  MJ  U(       d  [
        R                  U	-   $ U	$ )a  
Compute the rate of interest per period.

Parameters
----------
nper : array_like
    Number of compounding periods
pmt : array_like
    Payment
pv : array_like
    Present value
fv : array_like
    Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
    When payments are due ('begin' (1) or 'end' (0))
guess : Number, optional
    Starting guess for solving the rate of interest, default 0.1
tol : Number, optional
    Required tolerance for the solution, default 1e-6
maxiter : int, optional
    Maximum iterations in finding the solution

Notes
-----
The rate of interest is computed by iteratively solving the
(non-linear) equation::

 fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

for ``rate``.

References
----------
Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
Organization for the Advancement of Structured Information Standards
(OASIS). Billerica, MA, USA. [ODT Document]. Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt

z0.1z1e-6r   Fr   )r#   r   r   floatr&   r   r'   rQ   absallnan)r	   r   r   r   r    guesstolmaxiterdefault_typerniteratorclosernp1diffs                 r"   r   r   0  s    V D(g667EL }U#
{6" #BJJBD0I JT	BHEuIb::47|tz"A uu vv{	r+   c                 d   [         R                  " U SSS2   5      nUR                  S:H  UR                  S:  -  nUR	                  5       (       d  [         R
                  $ X   R                  nSU-  S-
  nUR                  [         R                  " [         R                  " U5      5      5      nU$ )aE  
Return the Internal Rate of Return (IRR).

This is the "average" periodically compounded rate of return
that gives a net present value of 0.0; for a more complete explanation,
see Notes below.

:class:`decimal.Decimal` type is not supported.

Parameters
----------
values : array_like, shape(N,)
    Input cash flows per time period.  By convention, net "deposits"
    are negative and net "withdrawals" are positive.  Thus, for
    example, at least the first element of `values`, which represents
    the initial investment, will typically be negative.

Returns
-------
out : float
    Internal Rate of Return for periodic input values.

Notes
-----
The IRR is perhaps best understood through an example (illustrated
using np.irr in the Examples section below).  Suppose one invests 100
units and then makes the following withdrawals at regular (fixed)
intervals: 39, 59, 55, 20.  Assuming the ending value is 0, one's 100
unit investment yields 173 units; however, due to the combination of
compounding and the periodic withdrawals, the "average" rate of return
is neither simply 0.73/4 nor (1.73)^0.25-1.  Rather, it is the solution
(for :math:`r`) of the equation:

.. math:: -100 + \frac{39}{1+r} + \frac{59}{(1+r)^2}
 + \frac{55}{(1+r)^3} + \frac{20}{(1+r)^4} = 0

In general, for `values` :math:`= [v_0, v_1, ... v_M]`,
irr is the solution of the equation: [G]_

.. math:: \sum_{t=0}^M{\frac{v_t}{(1+irr)^{t}}} = 0

References
----------
.. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed.,
   Addison-Wesley, 2003, pg. 348.

Examples
--------
>>> import numpy_financial as npf

>>> round(npf.irr([-100, 39, 59, 55, 20]), 5)
0.28095
>>> round(npf.irr([-100, 0, 0, 74]), 5)
-0.0955
>>> round(npf.irr([-100, 100, 0, -7]), 5)
-0.0833
>>> round(npf.irr([-100, 100, 0, 7]), 5)
0.06206
>>> round(npf.irr([-5, 10.5, 1, -8, 1]), 5)
0.0886

Nr   r   )	r   rootsimagrealanyrV   itemargminrT   )valuesresr.   r   s       r"   r   r   x  s    H ((6$B$<
 CHHMchhl+D88::vv
)..C S519D99RYYrvvd|,-DKr+   c                     [         R                  " U5      nUSU -   [         R                  " S[        U5      5      -  -  R	                  SS9$ )ap  
Returns the NPV (Net Present Value) of a cash flow series.

Parameters
----------
rate : scalar
    The discount rate.
values : array_like, shape(M, )
    The values of the time series of cash flows.  The (fixed) time
    interval between cash flow "events" must be the same as that for
    which `rate` is given (i.e., if `rate` is per year, then precisely
    a year is understood to elapse between each cash flow event).  By
    convention, investments or "deposits" are negative, income or
    "withdrawals" are positive; `values` must begin with the initial
    investment, thus `values[0]` will typically be negative.

Returns
-------
out : float
    The NPV of the input cash flow series `values` at the discount
    `rate`.

Warnings
--------
``npv`` considers a series of cashflows starting in the present (t = 0).
NPV can also be defined with a series of future cashflows, paid at the
end, rather than the start, of each period. If future cashflows are used,
the first cashflow `values[0]` must be zeroed and added to the net
present value of the future cashflows. This is demonstrated in the
examples.

Notes
-----
Returns the result of: [G]_

.. math :: \sum_{t=0}^{M-1}{\frac{values_t}{(1+rate)^{t}}}

References
----------
.. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed.,
   Addison-Wesley, 2003, pg. 346.

Examples
--------
>>> import numpy as np
>>> import numpy_financial as npf

Consider a potential project with an initial investment of $40 000 and
projected cashflows of $5 000, $8 000, $12 000 and $30 000 at the end of
each period discounted at a rate of 8% per period. To find the project's
net present value:

>>> rate, cashflows = 0.08, [-40_000, 5_000, 8_000, 12_000, 30_000]
>>> npf.npv(rate, cashflows).round(5)
3065.22267

It may be preferable to split the projected cashflow into an initial
investment and expected future cashflows. In this case, the value of
the initial cashflow is zero and the initial investment is later added
to the future cashflows net present value:

>>> initial_cashflow = cashflows[0]
>>> cashflows[0] = 0
>>> np.round(npf.npv(rate, cashflows) + initial_cashflow, 5)
3065.22267

r   r   )axis)r   r'   arangelensum)r   rh   s     r"   r   r     sD    H ZZFafryyCK888==1=EEr+   c                    [         R                  " U 5      n U R                  n[        U[        5      (       a  [	        U5      nU S:  nU S:  nUR                  5       (       a  UR                  5       (       d  [         R                  $ [         R                  " [        X U-  5      5      n[         R                  " [        XU-  5      5      nXg-  SUS-
  -  -  SU-   -  S-
  $ )a  
Modified internal rate of return.

Parameters
----------
values : array_like
    Cash flows (must contain at least one positive and one negative
    value) or nan is returned.  The first value is considered a sunk
    cost at time zero.
finance_rate : scalar
    Interest rate paid on the cash flows
reinvest_rate : scalar
    Interest rate received on the cash flows upon reinvestment

Returns
-------
out : float
    Modified internal rate of return

r   r   )	r   r'   sizer   r   re   rV   rT   r   )rh   finance_ratereinvest_raterI   posnegnumerdenoms           r"   r   r     s    * ZZFA
 ,((AJ
1*C
1*CGGII#''))vvFF3}Sj12EFF3|CZ01EK1a!e9%q='89A==r+   )r   )r   r   )r   NNd   )__doc__
__future__r   r   r   decimalr   numpyr   __all__r   r#   r   r   r	   r
   r<   r   r   rQ   r   r   r   r   rG   r+   r"   <module>r}      s    A @  ! 1Q/Y!x\"~E)P`F.7:]!J
(EPM`EFP$>r+   